CHAPTER # Aldehydes, Ketones and **Carboxylic Acids** # Section-A # JEE Advanced/ IIT-JEE #### Fill in the Blanks - Formic acid when heated with conc. H₂SO₄ produces 1. (1983 - 1 Mark) - Fehling's solution 'A' consists of an aqueous solution of 2. copper sulphate, while Fehling's solution 'B' consists of an alkaline solution of (1990 - 1 Mark) - 3. The structure of the intermediate product, formed by the oxidation of toluene with CrO₃ and acetic anhydride, whose hydrolysis gives benzaldehyde is (1992 - 1 Mark) - 4. The structure of the enol form of CH₃-CO-CH₂-CO-CH₃ with intramolecular hydrogen bonding is (1993 - 1 Mark) #### True / False В - 1. Benzaldehyde undergoes aldol condensation in an alkaline (1982 - 1 Mark) - 2. Hydrolysis of an ester in presence of a dilute acid is known as saponification. (1983 - 1 Mark) - 3. The yield of ketone when a secondary alcohol is oxidized is more than the yield of aldehyde when a primary alcohol is oxidized. (1983 - 1 Mark) - The reaction of methyl magnesium iodide with acetone 4. followed by hydrolysis gives secondary butanol. (1987 - 1 Mark) 5. The boiling point of propionic acid is less than that of *n*-butyl alcohol, an alcohol of comparable molecular weight. (1991 - 1 Mark) # **MCQs with One Correct Answer** - The reagent with which both acetaldehyde and acetone react 1. (1981 - 1 Mark) easily is - (a) Fehling's reagent - (b) Grignard reagent - (c) Schiff's reagent - (d) Tollen's reagent - 2. When acetaldehyde is heated with Fehling's solution it gives a precipitate of (1983 - 1 Mark) - (a) Cu - (b) CuO - (c) Cu₂O - (d) $Cu + Cu_2O + CuO$ - 3. The Cannizzaro reaction is not given by (1983 - 1 Mark) - (a) trimethylacetaldehye - (b) acetaldehyde - (c) benzaldehyde - (d) formaldehyde - 4. The compound that will not give iodoform on treatment with alkali and iodine is: (1985 - 1 Mark) - (a) acetone - (b) ethanol - diethyl ketone (c) - (d) isopropyl alcohol - Polarisation of electrons in acrolein may be written as (1988 - 1 Mark) (a) $$\overset{\delta^-}{CH_2} = CH - \overset{\delta^+}{CH} = O$$ (b) $$CH_2 = CH - CH = O$$ (c) $$\overset{\delta^{-}}{CH_{2}} \overset{\delta^{+}}{CH} - CH = O$$ (d) $\overset{\delta^{+}}{CH_{2}} = CH - CH = O$ - The enolic form of acetone contains (1990 - 1 Mark) 6. - 9 sigma bonds, 1 pi-bond and 2 lone pairs - (b) 8 sigma bonds, 2 pi-bonds and 2 lone pairs - 10 sigma bonds, 1 pi-bond and 1 lone pair - (d) 9 sigma bonds, 2 pi-bonds and 1 lone pair - m-Chlorobenzaldehyde on reaction with conc. KOH at room 7. temperature gives (1991 - 1 Mark) - (a) potassium *m*-chlorobenzoate and *m*-hydroxybenzaldehyde - *m*-hydroxybenzaldehyde and *m*-chlorobenzyl alcohol - *m*-chlorobenzyl alcohol and *m*-hydroxybenzyl alcohol - (d) potassium *m*-chlorobenzoate and *m*-chlorobenzyl alcohol. - Hydrogenation of benzoyl chloride in the presence of Pd on (1992 - 1 Mark) BaSO₄ gives - (a) Benzyl alcohol - (b) Benzaldehyde - (c) Benzoic acid - (d) Phenol - 9. The organic product formed in the reaction (1995S) $$C_6H_5COOH \xrightarrow{\text{I LialH}_4} \xrightarrow{\text{II H}_3O^+}$$ - (a) $C_6H_5CH_2OH$ - (b) $C_6H_5COOH\&CH_4$ - (c) $C_6H_5CH_3 & CH_3OH$ - (d) $C_6H_5CH_3 & CH_4$ - The reaction products of $C_6H_5OCH_3 + HI \xrightarrow{\Delta}$ is: (1995S) - (a) $C_6H_5OH + CH_3I$ - (b) $C_6H_5I + CH_3OH$ - (c) $C_6H_5CH_3 + HOI$ - (d) $C_6H_6 + CH_3OH$ 11. In the Cannizzaro reaction given below, (1996 - 1 Mark) $^{-}OH \rightarrow PhCH_2OH + PhCO_2^{-}$, the slowest step is - (a) the attack of OH at the carbonyl group, - (b) the transfer of hydride to the carbonyl group, - (c) the abstraction of proton from the carboxylic acid, - (d) the deprotonation of PhCH₂OH. - 12. When propionic acid is treated with aqueous sodium bicarbonate, CO₂ is liberated. The 'C' of CO₂ comes from - (1999 2 Marks) - (a) methyl group - (b) carboxylic acid group - (c) methylene group - (d) bicarbonate - 13. The enol form of acetone, after treatment with D_2O , gives. (1999 2 Marks) - $\begin{array}{ccc} & OD \\ (a) & CH_3 C = CH_2 \end{array}$ - (b) $CD_3 C CD_3$ - (c) $CH_2 = C CH_2D$ - (d) $CD_2 = C CD_3$ - **14.** Which one of the following will most readily be dehydrated in acidic condition? (2000S) - (a) OH - (b) OH - (c) OH - (d) OH - 15. Benzoyl chloride is prepared from benzoic acid by (2000S) - (a) Cl_2, hv - (b) SO_2Cl_2 - (c) SOCl₂ - (d) Cl_2 , H_2O - 16. The appropriate reagent for the following transformation is (2000S) - (a) Zn(Hg), HCl - (b) NH_2NH_2 , OH^{-1} - (c) H₂/Ni - (d) NaBH₄ - 17. A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH solution gives (2001S) - (a) benzyl alcohol and sodium formate - (b) sodium benzoate and methyl alcohol - (c) sodium benzoate and sodium formate - (d) benzyl alcohol and methyl alcohol 18. The product of acid hydrolysis of P and Q can be distinguished by (2003S) $$P = H_2C$$ CH_3 , $Q = H_3C$ $CCOCH_3$ - (a) Lucas Reagent - (b) 2,4–DNP - (c) Fehling's Solution - (d) NaHSO₃ Major product is: (2003S) 20. Ethyl ester $\xrightarrow{\text{CH}_3\text{MgBr}}$ P. The product P will be (2003S) - 21. An enantiomerically pure acid is treated with a racemic mixture of an alcohol having one chiral carbon. The ester formed will be (2003S) - (a) Optically active mixture (b) Pure enantiomer - (c) Meso compound - (d) Racemic mixture - 22. The correct order of reactivity of PhMgBr with (2004S) - (a) (I)>(II)>(III) - (b) (III) > (II) > (I) - (c) (II)>(III)>(I) - (d) (I)>(III)>(II) - 23. How will you convert butan-2-one to propanoic acid? (2005S) - (a) Tollen's reagent - (b) Fehling's solution - (c) NaOH/I₂/H⁺ - (d) NaOH/NaI/H+ $$\begin{array}{c} \text{CH}_3\text{COONa} \\ \hline \text{H}_3\text{O}^+ \end{array} \longrightarrow \begin{array}{c} \text{CH} = \text{CHCOOH} \end{array}$$ The compound (X) is (2005S) - (a) CH₃COOH - (b) BrCH₂-COOH - (c) (CH₃CO)₂O - (d) CHO-COOH - 25. 4–Methylbenzenesulphonic acid reacts with sodium acetate to give (2005S) (a) $$CH_3$$ $COONa$ $COONa$ CH_3COOH (b) CH_3 $COONa$ $COONa$ (c) $$\bigcirc$$; SO₃ **26.** In the following reaction sequence, the correct structures of E, F and G are $$\begin{array}{c} O & O \\ Ph & * OH \end{array}$$ $$\xrightarrow{\text{Heat}} [E] \xrightarrow{I_2} [F] + [G]$$ [* implies ¹³C labelled carbon) (2008) (a) $$E = \bigvee_{Ph}^{O} \bigvee_{CH_3}^{O} F = \bigvee_{Ph}^{O} \bigvee_{Na}^{\Theta} G = CHI_3$$ (b) $E = \bigvee_{Ph}^{O} \bigvee_{CH_3}^{*} F = \bigvee_{Ph}^{O} \bigoplus_{Na}^{\bigoplus} G = CHI_3$ (c) $$E = \bigvee_{Ph}^{O} \bigvee_{CH_3}^{*} F = \bigvee_{Ph}^{O} \bigotimes_{Na}^{\bigoplus} G = \overset{*}{CHI_3}$$ (d) $$E = \bigvee_{Ph}^{O} \bigvee_{CH_3}^{*} F = \bigvee_{Ph}^{O} \bigotimes_{Na}^{\bigoplus} G = CH_3I$$ 27. The correct acidity order of the following is (2009S) - $(I) \qquad \qquad (II)$ - (III) (IV) - (a) (III)>(IV)>(II)>(I) - (b) (IV)>(III)>(I)>(II) - (c) (III)>(II)>(IV) - (d) (II)>(III)>(IV)>(I) - 28. In the reaction the structure of the product T is: (2010) #### 29. The compounds P, Q and S $$HO$$ P Q S were separately subjected to nitration using HNO_3/H_2SO_4 mixture. The major product formed in each case respectively, is: (2010) (a) $$HO \longrightarrow NO_2$$ $H_3C \longrightarrow NO_2$ $O_2N \longrightarrow O_2N$ (b) $$_{\text{HO}}$$ $_{\text{NO}_2}$ $_{\text{H}_3\text{C}}$ $_{\text{NO}_2}$ $_{\text{NO}_2}$ (d) $$HO \longrightarrow H_3C \longrightarrow NO_2$$ $H_3C \longrightarrow NO_2$ #### 30. The major product of the following reaction is (2011) - (a) a hemiacetal - (b) an acetal - (c) an ether - (d) an ester #### **31.** The carboxyl functional group (–COOH) is present in (2012) - (a) picric acid - (b) barbituric acid - (c) ascorbic acid - (d) aspirin #### 32. The major product H of the given reaction sequence is $$CH_3 - CH_2 - CO - CH_3 \xrightarrow{\Theta_{CN}} G \xrightarrow{95\% H_2SO_4} H$$ $$(2012 - II)$$ (a) $$CH_3$$ — CH = C — $COOH$ CH_3 (b) $$CH_3 - CH = C - CN$$ CH_3 (d) $$CH_3-CH=C-CO-NH_2$$ CH_3 33. The compound that undergoes decarboxylation most readily under mild condition is (2012) (a) $$COOH$$ CH_2COOH (b) CH_2COOH CH_2COOH (c) $COOH$ **34.** The compound that does **NOT** liberate CO₂, on treatment with aqueous sodium bicarbonate solution, is (JEE Adv. 2013) - (a) Benzoic acid - (b) Benzenesulphonic acid - (c) Salicylic acid - (d) Carbolic acid (Phenol) - 35. The major product in the following reaction is (JEE Adv. 2014) 36. The correct order of acidity for the following compounds is (JEE Adv. 2016) - I > II > III > IV - (b) III>I>II>IV - (c) III > IV > II > I - (d) I>III>IV>II - 37. The major product of the following reaction sequence is (JEE Adv. 2016) ### MCQs with One or More Than One Correct - 1. Base catalysed aldol condensation occurs with: - (a) propionaldehyde (1984 - 1 Mark) - (b) benzaldehyde - (c) 2-methylpropionaldehyde - (d) 2, 2-dimethylpropionaldehyde - 2. Which of the following compounds will give a yellow precipitate with iodine and alkali? (1984 - 1 Mark) - (a) 2-Hydroxypropane - (b) acetophenone - (c) methyl acetate - (d) acetamide - 3. Which of the following compounds will react with ethanolic KCN? (1984 - 1 Mark) - (a) ethyl chloride - (b) acetyl chloride - (c) chlorobenzene - (d) benzaldehyde - 4. Keto-enol tautomerism is observed in (1988 - 1 Mark) - (b) H₅C₆-Ö-CH₃ - (d) H_5C_6 - \ddot{C} - CH_7 - CH_3 - 5. Which of the following are examples of aldol condensation? (1989 - 1 Mark) - 2CH₃CHO dil. NaOH → CH₃CHOHCH₂CHO - 2CH₃COCH₃ $\xrightarrow{\text{dil. NaOH}}$ CH₃COH(CH₃)CH₂COCH₃ - (c) 2HCHO $\xrightarrow{\text{dil. NaOH}}$ CH₃OH - (d) $C_6H_5CHO + HCHO \xrightarrow{\text{dil. NaOH}} C_6H_5CH_2OH$ - 6. A new carbon-carbon bond formation is possible in - Cannizzaro reaction (1998 - 2 Marks) C-157 - Friedel-Craft alkylation - Clemmensen reduction - (d) Reimer-Tiemann reaction - 7. Which of the following will react with water? (1998 - 2 Marks) - (a) CHCI₂ - (b) Cl₂CCHO - (c) CCI - (d) CICH, CH, Cl - Which of the
following will undergo aldol condensation? 8. (1998 - 2 Marks) - (a) acetaldehyde - (b) propanaldehyde - (c) benzaldehyde - (d) trideuteroacetaldehyde - 9. Which of the following reactants on reaction with conc. NaOH followed by acidification gives following lactone as the product? (2006 - 5M, -1) + Cl-CH2CH2CH3 10. $$\xrightarrow{\text{AlCl}_3} P \xrightarrow{\text{(i) O}_2/\Delta} Q + \text{Pheno}$$ The major products P and Q are (2006 - 5M, -1) and CH₃CH₂CHO - The smallest ketone and its next homologue are reacted with NH₂OH to form oxime (2006 - 5M, -1) - Two different oximes are formed - Three different oximes are formed - Two oximes formed are optically active - All oximes formed are optically active 12. Identify the binary mixture(s) that can be separated into individual compounds, by differential extraction as shown in the given scheme. (2012) - (a) C_6H_5OH and C_6H_5COOH - (b) C_6H_5COOH and $C_6H_5CH_2OH$ - (c) C₆H₅CH₂OH and C₆H₅OH - (d) C₆H₅CH₂OH and C₆H₅CH₂COOH - 13. With reference to the scheme given below, which of the given statement(s) about T, U, V and W is (are) correct? - (a) T is soluble in hot aqueous NaOH - (b) U is optically active - (c) Molecular formula of W is $C_{10}H_{18}O_4$ - (d) V gives effervescence on treatment with aqueous NaHCO₃. - 14. In the following reaction, the product(s) formed is(are) (JEE Adv. 2013) 15. After completion of the reactions (I and II), the organic compound(s) in the reaction mixtures is(are) (JEE Adv. 2013) Reaction I: $$H_3C$$ CH_3 $Br_2(1.0 \text{ mol})$ aqueous NaOH - (a) Reaction I: P and Reaction II: P - (b) Reaction I: U, acetone and Reaction II: Q, acetone - (c) Reaction I: T, U, acetone and Reaction II: P - (d) Reaction I: R, acetone and Reaction II: S, acetone - 16. The major product of the following reaction is (JEE Adv. 2015) U 17. Positive Tollen's test is observed for (JEEAdv. 2016) $$(a) \quad H \qquad \qquad (b) \qquad CHO$$ $$(c) \quad Ph \qquad Ph \qquad (d) \quad Ph \qquad Ph$$ **CLICK HERE** C-159 18. The correct statement(s) about the following reaction sequence is(are) (*JEE Adv. 2016*) $$Cumene(C_9H_{12}) \xrightarrow{(i)O_2} \mathbf{P} \xrightarrow{CHCl_3/NaOH}$$ \mathbf{Q} (major) + \mathbf{R} (minor) $$Q \xrightarrow{\text{NaOH}} S$$ - (a) R is steam Volatile - (b) **Q** gives dark violet coloration with 1% aqueous FeCl₃ solution - (c) S gives yellow precipitate with 2, 4-dinitrophenylhydrazine - (d) S gives dark violet coloration with 1% aqueous FeCl₃ solution - 19. Reagent(s) which can be used to bring about the following transformation is (are) (JEE Adv. 2016) $$COOH$$ $COOH$ O - (a) $LiAlH_4 in (C_2H_5)_2O$ - (b) BH₂ in THF - (c) NaBH₄ in C_2H_5OH - (d) Raney Ni/H, in THF ### **E** Subjective Problems - 1. Write the structural formula of the main organic product formed when: - (i) methanal reacts with ammonia (1981 ½ Mark) - (ii) ethyl acetate is treated with double the molar quantity of ethyl magnesium bromide and the reaction mixture poured into water. (1981 ½ Mark) - (iii) benzene $\xrightarrow{\text{CH}_3\text{CH}_2\text{COCI/AICI}_3}$ (1985 1 Mark) - (iv) propanal $\xrightarrow{\text{NaOH}}$ (1985 1 Mark) - (v) H_3CO —CHO+HCHO —KOH (1992 1 Mark) - (vi) $C_6H_5COOH + CH_3MgI \rightarrow ? + ? (1993 2 Marks)$ - (vii) $C_6H_5CH_2CO_2CH_3 \xrightarrow{(i)CH_3MgBr(excess)}$ (ii) H^+ (1994 - 1 Mark) (ix) $C_6H_5 - CHO + CH_3 - COOC_2H_5$ $\xrightarrow{\text{NaOC}_2H_5 \text{ in absolute} \atop C_2H_5 \text{ OH and heat}} - \xrightarrow{\textbf{D}} (1995 - 1 \text{ Mark})$ (x) $o - HOOC - C_6H_4 - CH_2 - C_6H_5$ $$\xrightarrow{SOCl_2} - - - - \xrightarrow{anhydrous} - - - - -$$ AlCl₃ $$H \xrightarrow{Zn-Hg} I \longrightarrow I$$ (1995 - 2 Marks) (xi) Complete the following reaction with appropriate structure. (1996 - 1 Mark) $$CH_3CH_2$$ $C=O \xrightarrow{1.KCN/H_2SO_4} D$ (xii) $$Ph_3P = CH_2 \longrightarrow ----$$ (1997 - 1 Mark) (xiii) $(COOH)_2 + (CH_2OH)_2 + Conc.H_2SO_4$ (xiv) $$R - C = C - R + HClO_4$$ \longrightarrow ----- $$\begin{bmatrix} C \\ C \end{bmatrix}$$ $$[R = n-Pr]$$ (1997 - 1 Mark) - (xv) $CICH_2CH_2COPh + KOH + MeOH \longrightarrow ----$ (1997 1 Mark) - (xvi) $H_3CCOCOC_6H_5 + NaOH/H_3O^{\oplus} \longrightarrow ----$ (1997 1 Mark) - (xvii) $(CH_3)_2CHOCH_3 \xrightarrow{HI(excess), heat} 2 \text{ Products.}$ (1998 2 Marks) (xviii) $$\xrightarrow{\text{base}}$$ (2000 - 1 Mark) (xix) Write the structures of the products A and B. CH₃ $$\longrightarrow$$ C \longrightarrow ¹⁸ OC₂H₅ \longrightarrow A + B (2000 - 2 Marks) (xx) Identify A, B, C and give their structures. $$\begin{array}{c} CH_{3} & \xrightarrow{Br_{2}} & (A) + (B) \\ CH_{3} & \xrightarrow{NaOH} & (C) C_{7}H_{12}O \end{array}$$ $$\begin{array}{c} (2000 - 3 Marks) \end{array}$$ - 2. Write the chemical equation to show what happens when ethyl acetate is treated with sodium ethoxide in ethanol and the reaction mixture is acidified. (1981 2 Marks) - 3. Outline the reaction sequence for the conversion of - (i) methanal to ethanal (the number of steps should not be more than three). (1981 2 Marks) - (ii) acetylene to acetone (1985 1 Mark) - (iii) acetic acid to tertiary-butyl alcohol. (1989 - 1½ Marks) (iv) Ethanal to 2-hydroxy-3-butenoic acid (1990 - 2 Marks) - (v) Ethanoic acid to a mixture of methanoic acid and diphenyl ketone. (1990 2Marks) - (vi) Carry out the following transformation in not more than three steps. (1999 3 Marks) $$CH_3 - CH_2 - C \equiv C - H \rightarrow CH_3 - CH_2 - CH_2 - C - CH_3$$ 4. Outline the accepted mechanism of the following reaction. Show the various steps including the charged intermediates. (1981 - 3 Marks) $$\begin{array}{c|c} & O \\ & \parallel \\ & + \operatorname{CH}_3 - \operatorname{C} - \operatorname{Cl} & \xrightarrow{\operatorname{AlCl}_3} & & \\ & & \parallel \\ & O & & \\ \end{array}$$ - 5. An alkene (A) on ozonolysis yields acetone and an aldehyde. The aldehyde is easily oxidized to an acid (B). When B is treated with bromine in presence of phosphorus, it yields a compound (C) which on hydrolysis gives a hydroxy acid (D). This acid can also be obtained from acetone by reaction with hydrogen cyanide followed by hydrolysis. Identify the compounds A, B, C and D. (1982 2 Marks) - **6.** Give reasons for the following: - (i) Acetic acid can be halogenated in the presence of red P and Cl₂ but formic acid cannot be halogenated in the same way. (1983 1 Mark) - (ii) Formic acid is a stronger acid than acetic acid; (1985 - 1 Mark) (iii) Suggest a reason for the large difference between the boiling points of butanol and butanal, although they have almost the same solubility in water. (1985 - 2 Marks) - (iv) Hydrazones of aldehydes and ketones are not prepared in highly acidic medium. (1986 1 Mark) - (v) Iodoform is obtained by the reaction of acetone with hypoiodite but not with iodide ion. (1991 1 Mark) - (vi) In acylium ion, the structure $R C = O^+$ is more stable than $R C^+ = O$. (1994 1 Mark) - (vii) Although phenoxide ion has more number of resonating structures than benzoate ion, benzoic acid is a stronger acid than phenol. Why? (1997 2 Marks) - (viii) Explain why o-hydroxybenzaldehyde is a liquid at room temperature while p-hydroxybenzaldehyde is a high melting solid. (1999 2 Marks) - State the conditions under which the following preparation are carried out. Give the necessary equations which need not be balanced. - (i) Ethanol from acetylene (1983 1 Mark) - (ii) Acetic acid from methyl iodide (1983 1 Mark) - 8. What happens when *p*-xylene is reacted with concentrated sulphuric acid and the resultant product is fused with KOH. (1984 2 Marks) - 9. Write down the reactions involved in the preparation of the following using the reagents indicated against it in parenthesis: Propionic anhydride from propionaldehyde $[AgNO_3/NH_4OH, P_2O_5].$ (1984 - 2 Marks) - 10. Give a chemical test/suggest a reagent to distinguish between acetaldehyde from acetone. (1987 1 Mark) - 11. Arrange the following in increasing ease of hydrolysis CH₃COOC₂H₅, CH₃COCl, (CH₃CO)₂O, CH₃CONH₂. (1986 - 1 Mark) 12. A white precipitate was formed slowly when silver nitrate was added to a compound (A) with molecular formula C₆H₁₃Cl. Compound (A) on treatment with hot alcoholic potassium hydroxide gave a mixture of two isomeric alkenes (B) and (C), having formula C₆H₁₂. The mixture of (B) and (C), on ozonolysis, furnished four compounds: (1986 - 4 Marks) (i) CH₃CHO; (ii) C₂H₅CHO; (iii) CH₃COCH₃ and What are the structures of (A), (B) and (C)? - 13. A liquid (X), having a molecular formula $C_6H_{12}O_2$ is hydrolysed with water in the presence of an acid to give a carboxylic acid (Y) and an alcohol (Z). Oxidation of (Z) with chromic acid gives (Y). What are the structures of (X), (Y) and (Z)? (1986 3 Marks) - 14. Complete the following with appropriate structures: (i) $$(CH_3CO)_2O \xrightarrow{C_2H_5OH} CH_3COOH + ?$$ (1986 - 1 Mark) (ii) $$? \xrightarrow{\text{NaOH}} \bigcirc \bigcirc -\text{CH} = \text{CH} - \text{CHO}$$ (1986 - 1 Mark) - 15. An unknown compound of carbon, hydrogen and oxygen contains 69.77% carbon and 11.63% hydrogen and has a molecular weight of 86. It does not reduce Fehling solution, but forms a bisulphite addition compound and gives a positive iodoform test. What are the possible structures for the unknown compound? (1987 5 Marks) - 16. An organic compound (A) on treatment with acetic acid in the presence of sulphuric acid produces an ester (B), (A) on mild oxidation gives (C), (C) with 50% potassium hydroxide followed by acidification with dilute hydrochloric acid generates (A) and (D), (D) with phosphorus pentachloride followed by reaction with ammonia gives (E), (E) on dehydration produces hydrocyanic acid. Identify the compounds A, B, C, D and E. (1987 5 Marks) #### 17. Complete the following reactions: (i) $$H_3C-CHO \xrightarrow{CH_3MgBr} ? \xrightarrow{?} H_3C-\overset{OH}{C-C-CH_3}$$ (1988 - 1 Marks) (ii) $$CH_3COOH \xrightarrow{?} CICH_2COOH \xrightarrow{excess \ ammonia} ?$$ (1988 -
1 Marks) (iii) $$2CH_3CCH_3 \xrightarrow{base \ catalyst} ? \xrightarrow{acid \ catalyst} ?$$ (1988 - 1 Marks) (iv) $$\stackrel{SO_3H}{\longrightarrow}$$ $\stackrel{OH}{\longrightarrow}$ $\stackrel{CHCl_3/NaOH}{\longrightarrow}$? (1988 - 1 Marks) - 18. A hydrocarbon A (molecular formula C₅H₁₀) yields 2-methylbutane on catalytic hydrogenation. A adds HBr (in accordance with Markownikoff's rule) to form a compound B which on reaction with silver hydroxide forms an alcohol C, C₅H₁₂O. Alcohol C on oxidation gives a ketone D. Deduce the structures of A, B, C and D and show the reactions involved. (1988 5 Marks) - 19. A ketone 'A' which undergoes haloform reaction gives compound B on reduction. B on heating with sulphuric acid gives compound C, which forms monoozonide D, D on hydrolysis in presence of zinc dust gives only acetaldehyde. Identify A, B and C. Write down the reactions involved. (1989 4 Marks) - 20. The sodium salt of a carboxylic acid, A, was produced by passing a gas, B, into an aqueous solution of caustic alkali at an elevated temperature and pressure. A, on heating in presence of sodium hydroxide followed by treatment with sulphuric acid gave a dibasic acid, C. A sample of 0.4 g of acid C, on combustion gave 0.08 g of water and 0.39 g of carbon dioxide. The silver salt of the acid C weighing 1.0 g on ignition yielded 0.71 g of silver as residue. Identify A, B and C. (1990 5 Marks) - 21. Compound A ($C_6H_{12}O_2$) on reduction with LiAlH₄ yielded two compounds B and C. The compound B on oxidation gave D, which on treatment with aqueous alkali and subsequent heating furnished E. The latter on catalytic hydrogenation gave C. The compound D was oxidized further to give F which was found to be a monobasic acid (molecular weight = 60.0). Deduce the structures of A, B, C, D and E. (1990 4 Marks) - 22. An organic compound containing C, H and O exists in two isomeric forms A and B. An amount of 0.108 g of one of the isomers gives on combustion 0.308 g of CO₂ and 0.072 g of H₂O. A is insoluble in NaOH and NaHCO₃ while B is soluble in NaOH. A reacts with conc. HI to give compounds C and D. C can be separated from D by ethanolic AgNO₃ solution and D is soluble in NaOH. B reacts readily with bromine water to give compound E of molecular formula, C₇H₅OBr₃. Identify, A, B, C, D and E with justification and give their structures. (1991 6 Marks) 23. (i) $$C_6H_5COOH \xrightarrow{PCl_5} C$$ $$\xrightarrow{NH_3} D \xrightarrow{P_2O_5} C_6H_5CN \xrightarrow{H_2/Ni} E;$$ Identify C, D and E. (1991 - 2 Marks) (ii) $$H_3C-CH=CH-CHO \xrightarrow{NaBH_4} F$$ $$\xrightarrow{HCl} G \xrightarrow{KCN} H;$$ Identify F, G and H. (1991 - 2 Marks) - 24. Compound 'X', containing chlorine on treatment with strong ammonia gives a solid 'Y' which is free from chlorine. 'Y' analysed as C = 49.31%, H = 9.59% and N = 19.18% and reacts with Br₂ and caustic soda to give a basic compound 'Z'. 'Z' reacts with HNO₂ to give ethanol. Suggest structures for 'X', 'Y' and 'Z'. (1992 1 Mark) - 25. An organic compound 'A' on treatment with ethyl alcohol gives a carboxylic acid 'B' and compound 'C'. Hydrolysis of 'C' under acidic conditions gives 'B' and 'D'. Oxidation of 'D' with KMnO₄ also gives 'B'. 'B' on heating with Ca(OH)₂ gives 'E' (molecular formula, C₃H₆O). 'E' does not give Tollent's test and does not reduce Fehling's solution but forms a 2,4-dinitrophenylhydrazone. Identify 'A', 'B', 'C', 'D' and 'E'. (1992 3 Marks) - 26. Arrange the following in increasing order of expected enol content (1992 1 Mark) CH₂COCH₂CHO, CH₂COCH₃, CH₃CHO, CH₃COCH₂COCH₃ 27. In the following reactions identify the compounds A, B, C and D. (1994 - 1 × 4 = 4 Marks) 28. When gas A is passed through dry KOH at low temperature, a deep red coloured compound B and a gas C are obtained. The gas A, on reaction with but-2-ene, followed by treatment with Zn/H₂O yields acetaldehyde. Identify A, B and C. (1994 - 3 Marks) - 29. An organic compound A, C₈H₆, on treatment with dilute sulphuric acid containing mercuric sulphate gives a compound B, which can also be obtained from a reaction of benzene with an acid chloride in the presence of anhydrous aluminium chloride. The compound B, when treated with iodine in aqueous KOH, yields C and a yellow compound D. Identify A, B, C and D with justification. Show how B is formed from A. (1994 3 Marks) - 30. Which of the following carboxylic acids undergoes decarboxylation easily? Explain briefly. (1995 2 Marks) - (i) C₆H₅-CO-CH₂-COOH (ii) C₆H₅-CO-COOH (iii) $$C_6H_5-CH-COOH$$ (iv) $C_6H_5-CH-COOH$ | | NH2 31. Suggest appropriate structures for the missing compounds. (The number of carbon atoms remains the same throughout the reactions.) (1996 - 3 Marks) $$CH_{3} \xrightarrow{\text{dil. KMnO}_{4}} A \xrightarrow{\text{HIO}_{4}} B \xrightarrow{\text{OH}^{-}} C$$ $$CH_{3}$$ - 32. An ester A (C₄H₈O₂), on treatment with excess methyl magnesium chloride followed by acidification, gives an alcohol B as the sole organic product. Alcohol B, on oxidation with NaOCl followed by acidification, gives acetic acid. Deduce the structures of A and B. Show the reactions involved. (1998 6 Marks) - 33. An aldehyde A (C₁₁H₈O), which does not undergo selfaldol condensation, gives benzaldehyde and two moles of B on ozonolysis. Compound B, on oxidation with silver ion gives oxalic acid. Identify the compounds A and B. (1998 - 2 Marks) 34. Write the intermediate steps for the following reaction. $$C_6H_5CH(OH)C \equiv CH \xrightarrow{H_3O^+} C_6H_5CH = CHCHO$$ (1998 - 2 Marks) 35. Complete the following reaction with appropriate structures of products/reagents: (1998 - 2 + 2 Marks) $$\begin{array}{c} CHC_6H_5 \\ \hline (i) LiAlH_4 \\ \hline (ii) H^+, Heat \end{array}$$ [D **36.** Complete the following reaction with appropriate reagents: (1999 - 3 Marks) 37. Explain briefly the formation of the products giving the structures of the intermediates. 38. An organic compound A, C₆H₁₀O on reaction with CH₃MgBr followed by acid treatment gives compound B. The compound B on ozonolysis gives compound C, which in presence of a base gives 1-acetylcyclopentene D. The compound B on reaction with HBr gives compound E. Write the structures of A, B, C and E. Show how D is formed from C? (2000 - 5 Marks) - 39. An organic compound A, C₈H₄O₃, in dry benzene in the presence of anhydrous AlCl₃ gives compound B. The compound B on treatment with PCl₅, followed by reaction with H₂/Pd (BaSO₄) gives compound C, which on reaction with hydrazine gives a cyclic compound D (C₁₄H₁₀N₂). Identify A, B, C and D. Explain the formation of D from C. (2000 5 Marks) - 40. Identify (A), (B), (C), (D) and (E) in the following schemes and write their structures: (2001 5 Marks) $$(B)$$ $$\xrightarrow{\text{HgSO}_4/\text{H}_2\text{SO}_4} (A) \xrightarrow{\text{NaNH}_2} (B)$$ $$\xrightarrow{\text{HgSO}_4/\text{H}_2\text{SO}_4} (C) \xrightarrow{\text{NH}_2\text{NHCONH}_2} (D)$$ $$[C] \xrightarrow{\text{NaOD}/\text{D}_2\text{O(excess)}} (E)$$ 41. Identify (X), (Y) and (Z) in the following synthetic scheme and write their structures. Ba*CO₃ + H₂SO₄ $$\longrightarrow$$ (X) gas [C* denotes C¹⁴] $$CH_2 = CH - Br \xrightarrow{\text{(i)Mg/ether}} (Y) \xrightarrow{\text{LiAlH}_4} (Z)$$ (2001 - 5 Marks) Explain the formation of labelled formaldehyde (H₂C*O) as one of the products when compound (Z) is treated with HBr and subsequently ozonolysed. Mark the C* carbon in the entire scheme. - 42. Five isomeric para-disubstituted aromatic compounds A to E with molecular formula $C_8H_8O_2$ were given for identification. Based on the following observations, give structures of the compounds. (2002 5 Marks) - (i) Both A and B form a silver mirror with Tollen's reagent;also B gives a positive test with FeCl₃ solution. - (ii) C gives positive iodoform test. - (iii) **D** is readily extracted in aqueous NaHCO₃ solution. - (iv) E on acid hydrolysis gives 1,4-dihydroxybenzene. - **43.** Identify X, Y and Z in the following synthetic scheme and write their structures. $$CH_{3}CH_{2}C \equiv C - H \xrightarrow{\text{(i) NaNH}_{2}} X$$ $$\xrightarrow{H_{2}/Pd-BaSO_{4}} Y \xrightarrow{\text{alkaline KMnO}_{4}} Z$$ Is the compound Z optically active? Justify your answer. $$(2002 - 5 Marks)$$ 44. A racemic mixture of (\pm) 2-phenylpropanoic acid on esterification with (+) 2-butanol gives two esters. Mention the stereochemistry of the two esters produced. (2003 - 2 Marks) - **45.** Compound A of molecular formula C₉H₇O₂Cl exists in keto form and predominantly in enolic form 'B'. On oxidation with KMnO₄, 'A' gives *m*-chlorobenzoic acid. Identify 'A' and 'B'. (2003 2 Marks) - 46. A monomer of a polymer on ozonolysis gives two moles of CH₂O and one mole of CH₃COCHO. Write the structure of monomer and write all 'cis' configuration of polymer chain. (2005 2 Marks) C-163 # F Match the Following DIRECTIONS (Q. No. 1): Each question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled A, B, C and D, while the statements in Column-II are labelled p, q, r, s and t. Any given statement in Column-I can have correct matching with ONE OR MORE statement(s) in Column-II. The appropriate bubbles corresponding to the answers to these questions have to be darkened as illustrated in the following example: p q r s t A P Q T S T B P Q T S T C P Q T S T D P Q T S T If the correct matches are A-p, s and t; B-q and r; C-p and q; and D-s then the correct darkening of bubbles will look like the given. 1. Match the entries in Column I with the correctly related quantum number(s) in Column II. Indicate your answer by darkening the appropriate bubbles of the 4 × 4 matrix given in the ORS (2008) #### Column I #### Column II (A) $$H_2N - NH_3Cl$$ (p) sodium fusion extract of the compound gives Prussian blue colour with FeSO₄ (q) gives positive FeCl₃ test (r) gives white precipitate with AgNO₃ (D) $$O_2N$$ $NH - NH_3Br$ NO_2 (s) reacts with aldehydes to form the corresponding hydrazone derivative
DIRECTIONS (Q. No. 2): Following question has matching lists. The codes for the list have choices (a), (b), (c) and (d) out of which ONLY ONE is correct. 2. Different possible <u>thermal</u> decomposition pathways for peroxyesters are shown below. Match each pathway from **List-I** with an appropriate structure from **List-II** and select the correct answer using the code given below the lists. (*JEE Adv. 2014*) P $$\dot{R} + R'\dot{O}$$ Q $\dot{R} + R'\dot{O}$ (Peroxyester) R $\dot{R} + R'\dot{O}$ $\dot{R} + R'\dot{O}$ $\dot{R} + \dot{R}'\dot{O}$ List-I 2. $$C_6H_5$$ O CH_3 4. $$C_6H_5$$ O C_{CH_3} #### Code: | | P | Q | R | S | |-----|---|---|---|---| | (a) | 1 | 3 | 4 | 2 | | (b) | 2 | 4 | 3 | 1 | | | P | Q | R | S | |-----|---|---|---|---| | (c) | 4 | 1 | 2 | 3 | | (d) | 3 | 2 | 1 | 4 | #### G **Comprehension Based Questions** #### PASSAGE-1 In the following reaction sequence, product I, J and L are formed. K represents a reagent. (2008) $$Hex - 3 - ynal \xrightarrow{1.NaBH_4} 1 \xrightarrow{1.Mg/ether} J \xrightarrow{K} J$$ 1. The structure of the product I is – 2. The structures of compound J and K, respectively, are The structure of product L is 3. #### PASSAGE-2 A carbonyl compound P, which gives positive iodoform test, undergoes reaction with MeMgBr followed by dehydration to give an olefin Q. Ozonolysis of Q leads to a dicarbonyl compound R, which undergoes intramolecular aldol reaction to give predominantly S. $$\mathbf{P} \xrightarrow{\begin{array}{c} 1. \text{MeMgBr} \\ 2. \text{H}^+, \text{H}_2 \text{O} \\ 3. \text{H}_2 \text{SO}_4, \Delta \end{array}} \mathbf{Q} \xrightarrow{\begin{array}{c} 1. \text{O}_3 \\ 2. \text{Zn,H}_2 \text{O} \end{array}} \mathbf{R} \xrightarrow{\begin{array}{c} 1. \text{OH}^- \\ 2. \Delta \end{array}} \mathbf{S}$$ 4. The structure of the carbonyl compound P is The structures of the products **Q** and **R**, respectively, are 5. (d) $$Me$$ CH_3 CHO Me Et 6. The structure of the product S is #### **PASSAGE-3** Two aliphatic aldehydes P and Q react in the presence of aqueous K₂CO₃ to give compound R, which upon treatment with HCN provides compound S. On acidification and heating, S gives the product shown below. (2010) C-165 #### 7. The compounds P and Q respectively are: (a) $$H_3C$$ $$H_3C$$ $$H_3C$$ $$H_3C$$ $$H_3C$$ $$H_3C$$ (b) $$H_3C$$ CH_3 H and H H C (c) $$H_3C$$ CH_2 H H_3C H CH_3 CH $$(d) \begin{array}{c} H_3C \\ CH \\ CH_3 \end{array} \begin{array}{c} CH \\ CH_3 \end{array} \begin{array}{c} H \\ CH \end{array} \text{ and } \begin{array}{c} H \\ CH \\ CH_3 \end{array} \begin{array}{c} H \\ CH \end{array}$$ #### 8. The compound R is: #### 9. The compound S is: #### PASSAGE-4 In the following reaction sequence, the compound J is an intermediate. $$I \xrightarrow{\text{(CH}_3\text{COO})_2\text{O}} J \xrightarrow{\text{(i) H}_2, \text{Pd/C}} K$$ $$\xrightarrow{\text{(ii) SOCl}_2} \text{(iii) anhyd. AlCl}_3$$ J (C₀H₈O₂) gives effervescence on treatment with NaHCO₃ and a positive Baeyer's test. (2012) #### 10. The compound I is (C) $$CH_3$$ (D) H #### The compound K is #### **PASSAGE-5** P and Q are isomers of dicarboxylic acid C₄H₄O₄. Both decolorize Br₂/H₂O. On heating, P forms the cyclic anhydride. Upon treatment with dilute alkaline KMnO₄, P as well as Q could produce one or more than one from S, T and U. (JEE Adv. 2013) #### Compounds formed from P and Q are, respectively - (a) Optically active S and optically active pair (T, U) - (b) Optically inactive S and optically inactive pair - Optically active pair (T, U) and optically active S - (d) Optically inactive pair (T, U)) and optically inactive S 13. In the following reaction sequences V and W are respectively $$Q \xrightarrow{H/Ni} V$$ $$+ V \xrightarrow{AlCl_3(anhydrous)} \xrightarrow{1. Zn-Hg/HCl} W$$ #### PASSAGE-6 In the following reactions $$C_8H_6\xrightarrow{Pd-BaSO_4}C_8H_8\xrightarrow{(i)\, H_2O_2,\, NaOH,\, H_2O}X$$ $$\begin{array}{c} H_2O \\ HgSO_4, H_2SO_4 \\ C_8H_8O \xrightarrow{(i) EtMgBr, H_2O} Y \end{array}$$ 14. Compound X is The major compound Y is (d) (JEE Adv. 2015) ## Assertion & Reason Type Questions Each of this question contains STATEMENT-1 (Assertion/ Statement) and STATEMENT-2 (Reason/Explanation) and has 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct. - Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 - (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 - Statement-1 is True, Statement-2 is False (c) - (d) Statement-1 is False, Statement-2 is True. - 1. Statement-1: Acetate ion is more basic than the methoxide Statement-2: The acetate ion is resonance stabilized (1994 - 2 Marks) 2. Statement-1: Acetic acid does not undergo haloform reaction. Statement-2: Acetic acid has no alpha hydrogens. (1998 - 2 Marks) 3. Statement-1: Dimethyl sulphide is commonly used for the reduction of an ozonide of an alkene to get the carbonyl compounds. Statement-2: It reduces the ozonide giving water soluble dimethyl sulphoxide and excess of it evaporates. (2001S) 4. **Statement-1**: p-Hydroxybenzoic acid has a lower boiling point than o-hydroxybenzoic acid. Statement-2: o-Hydroxybenzoic acid has intramolecular hydrogen bonding. (2007) #### I Integer Value Correct Type In the scheme given below, the total number of intramolecular 1. aldol condensation products formed from 'Y' is $$\begin{array}{c} 1. O_3 \\ 2. Zn, H_2O \end{array}$$ Y $\begin{array}{c} 1. \text{NaOH (aq)} \\ 2. \text{heat} \end{array}$ (2010) 2. Amongst the following, the total number of compounds soluble in aqueous NaOH is (2010) 3. The total number of carboxylic acid groups in the product (JEE Adv. 2013) $$O \longrightarrow O \longrightarrow O$$ $$O - 4. Consider all possible isomeric ketones, including stereoisomers of MW = 100. All these isomers are independently reacted with NaBH₄ (NOTE: stereoisomers are also reacted separately). The total number of ketones that give a racemic product(s) is/are (JEE Adv. 2014) - 5. Among the following, the number of reaction(s) that produce(s) benzaldehyde is (JEE Adv. 2015) I. $$\frac{\text{CO, HCl}}{\text{Anhydrous AlCl}_3/\text{CuCl}}$$ II. $$\frac{\text{CHCl}_2}{\text{III.}}$$ $$\frac{\text{COCl}}{\text{III.}}$$ $$\frac{\text{COCl}}{\text{Pd-BaSO}_4}$$ IV. $$\frac{\text{DIBAL-H}}{\text{Toluene, -78°C}}$$ #### AIEEE Section-B JEE Main - $CH_3CH_2COOH \xrightarrow{Cl_2} A \xrightarrow{alc. KOH} B.$ 1. What is B? - (a) CH₂CH₂COCl - (b) CH₂CH₂CHO [2002] - (c) CH₂=CHCOOH - (d) CICH2CH2COOH. - 2. On vigorous oxidation by permanganate solution. $(CH_3)_2C = CH - CH_2 - CHO$ gives [2002] - COOH + CH₃CH₂COOH CH₂ - $CH OH + CH_2CH_2CH_2OH$ - $C = O + CH_2CH_2CHO$ - 3. Picric acid is: [2002] (a) $$OOOH$$ COOH $OOOH$ (b) $OOOH$ OH - OH COOH NO, O,N (c) (d) NO - 4. When $CH_2 = CH - COOH$ is reduced with LiAlH₄, the compound obtained will be - (a) $CH_2 = CH CH_2OH$ - (b) $CH_3 CH_2 CH_2OH$ - (c) $CH_3 CH_2 \overline{CHO}$ - (d) $CH_3 CH_2 COOH$ - 5. On mixing ethyl acetate with aqueous sodium chloride, the composition of the resultant solution is - (a) CH₂COCl+C₂H₅OH+NaOH - [2004] - (b) CH₃COONa+C₂H₅OH - (c) CH₃COOC₂H₅+NaCl - (d) CH₃Cl+C₂H₅COONa - 6. Acetyl bromide reacts with excess of CH₃MgI followed by treatment with a saturated solution of NH₄Cl gives [2004] - (a) 2-methyl-2propanol - (b) acetamide - (c) acetone - (d) acetyl iodide - Which one of the following is reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon? - (a) Acetamide - (b) Acetic acid [2004] - (c) Ethyl acetate - (d) Butan-2-one - Which one of the following undergoes reaction with 50% - sodium hyroxide solution to give the corresponding alcohol and acid? [2004] - Butanal (a) - (b) Benzaldehyde - Phenol (c) - (d) Benzoic acid - 9. Among the following acids which has the lowest pK_a value? [2005] - (a) CH₃CH₂COOH - (b) $(CH_3)_2CH-COOH$ - (c) HCOOH - (d) CH₃COOH - 10. Reaction of cyclohexanone with dimethylamine in the presence of catalytic amount of an acid forms a compound if water during the reaction is continuously removed. The compound formed is generally known as [2005] - (a) an amine - (b) an imine - (c) an anemine - (d) a Schiff's base - 11. The increasing order of the rate of HCN addition to compound A D is [2006] - (A) HCHO - (B) CH₃COCH₃ - (C) PhCOCH₃ - (D) PhCOPh - (a) D < C < B < A(c) A < B < C < D - (b) C < D < B < A(d) D < B < C < A - 12. The correct order of increasing acid strength of the compounds [2006] - (A) CH_3CO_2H - (B) MeOCH₂CO₂H - (C) CF₃CO₂H - (D) $\frac{\text{Me}}{\text{Me}}$ \longrightarrow CO_2H is - (a) $D \le A \le B \le C$ - (b) A < D < B < C - (c) B < D < A < C - (d) D < A < C < B - 13. A liquid was mixed with ethanol and a drop of concentrated H₂SO₄ was added. A compound with a fruity smell was formed. The liquid was: [2009] - (a) HCHO - (b) CH₃COCH₃ - (c) CH₂COOH - (d) CH₂OH - 14. Which of the following on heating with aqueous KOH, produces acetaldehyde? [2009] - (a) CH₃CH₂Cl - (b) CH₂ClCH₂Cl - (c) CH₃CHCl₂ - (d) CH₃COCl - 15. In Cannizzaro reaction given below $$2\text{PhCHO} \xrightarrow{\overset{\Theta}{:}\text{OH}} \text{PhCH}_2\text{OH} + \text{PhC}\ddot{\text{O}}_2^{\Theta}$$ the slowest step is: [2009] - (a) the transfer of hydride to the carbonyl group - (b) the abstraction of proton from the carboxylic group - (c) the deprotonation of Ph CH₂OH - (d) the attack of: OH at the carboxyl group - 16. Which of the following reagents may be used to distinguish between phenol and benzoic acid? [2011] - (a) Aqueous NaOH - (b) Tollen's reagent - (c) Molisch reagent - (d) Neutral FeCl₃ - 17. Trichloroacetaldehyde was subjected to Cannizzaro's reaction by using NaOH. The mixture of the products contains sodium trichloroacetate and another compound. The other compound is: [2011] - (a) 2, 2, 2-Trichloroethanol - (b) Trichloromethanol - (c) 2, 2, 2-Trichloropropanol - (d) Chloroform - 18. The strongest
acid amongst the following compounds is: - (a) CH₂COOH [2011] - (b) HCOOH - (c) CH₂CH₂CH(Cl)CO₂H - (d) ClCH₂CH₂CH₂COOH - **19.** Sodium ethoxide has reacted with ethanoyl chloride. The compound that is produced in the above reaction is: - (a) Diethyl ether - (b) 2-Butanone [2011] - (c) Ethyl chloride - (d) Ethyl ethanoate - 20. Silver Mirror test is given by which one of the following compounds? [2011] - (a) Acetaldehyde - (b) Acetone - (c) Formaldehyde - (d) Benzophenone - 21. Iodoform can be prepared from all except: [2012] - (a) Ethyl methyl ketone - (b) Isopropyl alcohol - (c) 3-Methyl 2-butanone - (d) Isobutyl alcohol - 22. In the given transformation, which of the following is the most appropriate reagent? [2012] - (a) NH_2NH_2 , OH - (b) Zn-Hg/HCl - (c) Na, Liq NH₃ - (d) NaBH₄ - 23. The most suitable reagent for the conversion of $R-CH_2-OH \rightarrow R-CHO$ is: [JEE M 2014] - (a) KMnO₄ - (b) $K_2Cr_2O_7$ - (c) CrO₃ - (d) PCC (Pyridinium Chlorochromate) - 24. In the reaction, CH₃COOH $\xrightarrow{\text{LiAH}_4}$ A $\xrightarrow{\text{PCl}_5}$ B $\xrightarrow{\text{Alc.KOH}}$ C, the product C is: [JEE M 2014] - (a) Acetaldehyde - (b) Acetylene - (c) Ethylene - (d) Acetyl chloride - 25. In the following sequence of reactions: [JEE M.] $Toluene \xrightarrow{KMnO_4} A \xrightarrow{SOCl_2} B \xrightarrow{H_2/Pd \\ BaSO_4} C$ the product C is: - (a) $C_6H_5CH_2OH$ - (b) C_6H_5CHO - (c) C_6H_5COOH **CLICK HERE** (d) $C_6H_5CH_3$ # Aldehydes, Ketones and Carboxylic Acids #### Section-A: JEE Advanced/ IIT-JEE - 24. C₂H₅COCl, C₂H₅CONH₂, C₂H₅NH₂ - 25. CH,CO.O.COCH₂, CH,COOH, CH,COOC₂H₅, C₂H₅OH, CH,COCH₃ В \mathbf{C} - 26. CH₂CHO < CH₂COCH₂ < CH₂COCH₂CHO < CH₂COCH₂COCH₃ - 27. SOCl₂, POCl₃, CH₃COCl, CH₃COCH₃ - 28. O₃, KO₃, O₂ A B C - **29.** $C_6H_5C = CH, C_6H_5COCH_3, C_6H_5COOH, CHI_3$ **30.** (i) - В - **32.** $HCOOC_3H_7$, $(CH_3)_2CHOH$ - Α - В - $C_6H_5CH = CHCH = CCHO$, CHO.COOH 41. CO_2 , $CH_2 = CHCOOH$, $CH_2 = CHCH_2OH$ - $H_2C=C(CH_2).CH=CH_2$ - (A) r, s; (B) p, q; (C) p, q, r; (D) p, s - (a) - 4. - <u>G</u> 1. 2. (a) 3. (c) (d) **12.** (b) **13.** (a) 14. - 5. - (a) 6. - (b) 7. - (b) 8. - (a) **9.** - 2. (d) - (c) 3. 4 9. - (c) 15. - (d) **10.** (c) - 11. (a) \mathbf{H} 1. 2. - (a) 4. - (d) - 4. 5 5. (b) (d) ## Section-B: JEE Main/ AIEEE - 1. (c) 8. (b) - 2. (b) - (c) 3. 2 3. (c) (c) 4. (a) 11. (a) 4 5. (c) **12.** (a) **19.** (d) - 6. (a) **13.** (c) - (d) 14. (c) **15.** (a) (a) 22. - **16.** (d) 23. (d) - **17.** (a) 24. (c) **10.** - **18.** (c) **25.** (b) - 20. (a, c) - **21.** (d) #### JEE Advanced/ IIT-JEE Section-A #### A. Fill in the Blanks CO: HCOOH $\xrightarrow{\text{Conc.H}_2\text{SO}_4}$ CO + H₂O 1. 2. sodium potassium tartarate. 3. C₆H₅CH(OCOCH₃)₂ benzylidene acetate #### **B. TRUE / FALSE** - False: Benzaldehyde has no α-hydrogen atom hence it 1. does not undergo aldol condensation but undergoes Cannizzaro reaction. - 2. **False:** Saponification is alkaline hydrolysis of esters. - 3. True: Aldehydes (from primary alchols) may further be oxidised easily to acids as compared to ketones (from secondary alcohols). - False. Grignard reagents react with ketones to form ter-4. alcohols; hence here ter-butanol will be formed. - 5. False: H-bonding in propionic acid is stronger (carboxylic acids can form dimers) than that in butanol. $$R - C O - H - O C - R$$ #### C. MCQs with ONE Correct Answer - 1. Fehling solution, Schiff's reagent & Tollen's reagent react only with aldehydes but Grignard reagents react both with aldehydes and ketones. - $CH_3CHO + 2Cu^{2+} + OH^- \rightarrow CH_3COOH + Cu_2O \downarrow$ 2. Fehling solution - 3. TIPS/Formulae: **(b)** The compound containing α -H atom does not undergo Cannizzaro's reaction. Acetaldehyde does not undergo Cannizzaro reaction since it has α -H atoms while formaldehyde, trimethylacetaldehyde and benzaldehyde undergo Cannizzaro reaction since they do not contain α hydrogen atoms. 4. TIPS/Formulae: Iodoform test is given by compounds having -COCH₃ In acetone –COCH₃ group is present. Further ethanol and isopropyl alcohol get oxidised to acetaldehyde and acetone respectively (both having -COCH3 group) in presence of I₂ and they in turn give the test. Thus only diethyl ketone does not give this test. 5. **NOTE**: -CHO produces -R effect i.e. it withdraws electrons from the double bond or from a conjugated system towards itself. $$CH_2 = CH - C = O$$ or $CH_2 = CH - CH = O$ $\begin{array}{ccc} O & :OH \\ CH_3 - C - CH_3 & CH_3 - C = CH_2 \end{array}$ No. of σ bonds in enolic form: 3+1+1+1+1+2=9No. of π bonds in enolic form : 1 No. of lone pairs of electrons in enolic form = 2 7. **NOTE**: m-Chlobenzaldehyde does not contains α -H atom. It is an example of Cannizzaro reaction $$\begin{array}{c} \text{CHO} & \xrightarrow{\text{COOK}} & \text{CH}_2\text{OH} \\ & & \xrightarrow{\text{Conc. KOH}} & \xrightarrow{\text{COOK}} & \text{CH}_2\text{OH} \\ & & & & & & & & & & \\ \hline \end{array}$$ NOTE: This reaction is known as Rosenmund's 8. **(b)** reaction. $$C_6H_5COCl + H_2 \xrightarrow{Pd} C_6H_5CHO + HCl$$ 9. TIPS/FORMULAE: > LiAlH₄ is a reducing agent, it reduces -COOH group to -CH₂OH group. $$C_6H_5COOH \xrightarrow{LiAlH_4} C_6H_5CH_2OH$$ - (a) $C_6H_5OCH_3 \xrightarrow{HI} C_6H_5OH + CH_3I$ 10. - The possible mechanism is (i) $$Ph$$ — C = $O + OH$ $^ \rightleftharpoons$ Ph — C — O $^-$ (ii) $$Ph - C = O + Ph - C = O$$ OH $$-Slow \rightarrow Ph - C - O^{-} + Ph - C = O$$ $$H \rightarrow OH$$ $$\begin{array}{c} \text{Ph} - \text{CH}_2 - \text{OH} + \text{Ph} - \text{C} = \text{O} \\ \text{I} \\ \text{O}_- \end{array}$$ **NOTE:** The slowest step is the transfer of hydride to the carbonyl group as shown in step (ii). 12. (d) $$C_2H_5COOH + NaHCO_3 \rightarrow$$ $$C_2H_5COONa + H_2O + CO_2$$ - Remember that α H's of carbonyl group are easily **13.** replaced by D of D₂O. - 14. Compound (a) undergoes dehydration easily as the product obtained is conjugated and thus more stable. - (c) $C_6H_5 COOH + SOCl_2 \longrightarrow C_6H_5 COCl + SO_2 + HCl$ **16. (b)** Zn(Hg), HCl cannot be used when acid sensitive group like –OH is present, but NH₂NH₂, OH⁻ can be used. #### 17. (a) TIPS/Formulae: Both compounds do not contain α -hydrogen hence undergo Crossed Cannizzaro reaction. Initially OH⁻ attacks at the carbonyl carbon of HCHO than that of PhCHO because carbonyl carbon of HCHO is - (i) more electrophilic - (ii) less sterically hindered to give hydroxyalkoxide which acts as hydride donor in next step to give sodium formate. $$C_6H_5CHO + HCHO \xrightarrow{NaOH} HCOONa + C_6H_5CH_2OH$$ #### 18. (c) TIPS/Formulae: Ketone (non-reducing) and aldehyde (reducing) can be distinguished by Fehling solution. $$P \xrightarrow{H_2O/H^+} H_2C \xrightarrow{OH} CH_3 - C = O$$ $$CH_3 - C = O$$ $$CH_3 - C = O$$ Ketone $$Q \xrightarrow{H_2O/H^+} H_3C \xrightarrow{OH} OH \xrightarrow{CHO} CHO$$ Aldehyde #### 19. (b) **20.** (a) Recall that, esters react with excess of Grignard reagents to form 3° alcohols having at least two identical alkyl groups corresponding to Grignard reagent. $$\begin{matrix} O \\ \parallel \\ R-C-OR'+R"Mgx \longrightarrow R-C -R" \\ \parallel \\ R" \end{matrix}$$ Since here Grignard reagent is CH₃MgBr, the 3° alcohol should have at least two methyl groups Thus, the choice with at least two methyl groups at the carbon linked with –OH group will be the correct choice. Hence (a) is the correct choice. **21.** (a) The optically active acid will react with *d* and *l* forms of alcohol present in the racemic mixture at different rates to form two diastereomers in unequal amounts leading to optical activity of the product. #### 22. (c) TIPS/Formulae: Reaction of PhMgBr with carbonyl compounds is an example of nucleophilic addition on carbonyl group which increases with the increase in electron-deficiency of carbonyl carbon. Thus acetaldehyde is most reactive while C₆H₅COC₆H₅ least $$\begin{array}{c} O & O \\ \parallel \\ CH_3 \longrightarrow C-H \end{array} > \begin{array}{c} CH_3 \longrightarrow C \longrightarrow CH_3 \\ \text{supplies least electron to group} \end{array}$$ $$\begin{array}{c} O \\ \parallel \\ > C_6H_5 \longrightarrow C \longrightarrow C_6H_5 \\ \text{supplies electrons maximum} \\ \text{due to +M effect of } C_6H_5 \end{array}$$ 23. (c) $$H_3C - C - CH_2CH_3 \xrightarrow{I_2/OH^-}$$ $CHI_3 \downarrow + CH_3CH_2COO^-Na^+ \xrightarrow{H^+} CH_3CH_2COOH$ Propanoic acid #### 24. (c) TIPS/Formulae: This reaction is an example of "Perkin reaction". The compound X should be $(CH_3CO)_2O$. In this step the carbanion is obtained by removal In this step the carbanion is obtained by removal of an α -H atom from a molecule of an acid anhydride, the anion of the corresponding acid acting as a necessary base. 25. (a) This is simply an acid-base reaction. Weak base Weak acid (G) (F) 27. (a) Carboxylic acid is stronger acid than phenol. The presence of electron withdrawing group (e.g. Cl) increases acidic strength, while presence of electron donating group (e.g. CH₂) decreases acidic strength. 28. (c) (OH group is activing) $$\begin{array}{c|c} OCH_3 & OCH_3 \\ \hline & HNO_3/H_2SO_4 \\ \hline & CH_3 \\ (Q) & CH_3 \end{array}$$ (OCH₃ group is more activating) (Benzene ring having -O- is activated) 30. (b) $$\stackrel{\text{H}^+}{\bigcirc}$$ $\stackrel{\text{O}}{\bigcirc}$ $\stackrel{\text{H}^+}{\bigcirc}$ $\stackrel{\text{O}}{\bigcirc}$ $\stackrel{\text{CH}_2OH}{\bigcirc}$ $\stackrel{\text{O}^+}{\bigcirc}$ $\stackrel{\text{CH}_2R}{\bigcirc}$ $\stackrel{\text{O}^+}{\bigcirc}$ $\stackrel{\text{O}^+}{\bigcirc}$ $\stackrel{\text{CH}_2R}{\bigcirc}$ $\stackrel{\text{O}^-}{\bigcirc}$ $\stackrel{\text{O}^-}{}$ $\stackrel{\text{O}^-}{\bigcirc}$ $\stackrel{\text{O}^-}$ 31. (d) $$O_2N$$ O_2 O_2N O_2 O_3 O_4 O_4 O_5 O_5 O_6 O_7 O_8 O_8 O_8 O_9 32. (a) $CH_3 - CH_2 - C - CH_3 \xrightarrow{CN^-}$ $CH_3CH_2 - C - CH_3 \xrightarrow{95\%} CH_3CH_2 - C - CH_3$
CN - COOH[G] CN - COOH COOH COOH 33. (b) β -Ketoacids undergo decarboxylation easily. **34.** (d) Carbolic acid (Phenol) is weaker acid than carbonic acid and hence does not liberate CO₂ on treatment with aq. NaHCO₃ solution. 35. (d) $$(i) CH_3 MgBr \longrightarrow Cl \ O$$ $$(ii) aq. acid \longrightarrow Cl \ O$$ \therefore acidity order is I > II > III > IV #### 37. (a) #### D. MCQs with ONE or More Than One Correct #### 1. (a, c) TIPS/Formulae: Aldehydes having at least one α -hydrogen atom undergo aldol condensation. $$\begin{array}{c} \text{CHO} \\ \text{CH}_3 \text{ CH}_2 \text{ CHO} \\ \text{propionaldehyde} \\ \text{(a)} \\ \text{(a)} \\ \text{(b)} \\ \text{CH}_3 \\ \text{CH}_3 \text{CH} - \text{CHO} \\ \text{CH}_3 \\ \text{CH}_3 - \text{C} - \text{CHO} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{2-methylpropionaldehyde} \\ \text{(c)} \\$$ #### 2. (a, b) TIPS/Formulae: Iodoform reaction is given by the compounds containing $$CH_3 > C = O$$, $$\text{CH}_3$$ CHOH group, CH_3CHO and $\text{CH}_3\text{CH}_2\text{OH}$. 2-Hydroxypropane ($CH_3CHOHCH_3$) contains the grouping CH_3CHOH — and acetophenone ($C_6H_5COCH_3$) contains the grouping CH_3CO —linked to carbon and hence give yellow ppt. with I_2 and alkali—iodoform test. In methyl acetate (CH₃COOC₂H₅) and acetamide (CH₃CO-NH₂), CH₃CO is attached to a hetero atom but not to carbon atom and hence both these compounds do not give iodoform test. #### 3. (a,b,d) NOTE: Ethyl chloride and acetyl chloride react with alc. KCN by nucleophilic substitution reaction while benzaldehyde undergoes benzoin condensation: $$C_2H_5Cl \xrightarrow{KCN(alc.)} C_2H_5CN+KCl$$ $$CH_3COCl \xrightarrow{KCN(alc.)} CH_3COCN + KCl$$ $$2C_6H_5CHO \xrightarrow{KCN(alc.)} C_6H_5CHOHCOC_6H_5$$ Thus only chlorobenzene does not react. **4. (b, d)** Keto-enol tautomerism is shown in compounds having α -hydrogen on the C adjacent to the CO group. #### 5. (a, b) NOTE: Aldehydes and ketones containing α-Hydrogen atom undergo aldol condensation. 6. **(b,d)** (a) HCHO $$\xrightarrow{\text{OH}^-}$$ CH₃OH+HCOO (No new C - C bond is formed) (b) $$C_6H_6 + CH_3Cl \xrightarrow{AlCl_3} C_6H_5 - CH_3$$ (New C - C bond is formed) (c) $$C=O \xrightarrow{Na/H_g} CH_2$$ (No new C – C bond is formed) $$(d) \bigcirc \xrightarrow{\text{CHCl}_3, \text{ NaOH}} \bigcirc \text{CHO}$$ (New C - C bond is formed) #### 7. (b) TIPS/Formulae: Three Cl of chloral makes its carbonyl carbon highly electron deficient, hence H₂O, a nucleophile easily adds on it forming chloral hydrate, CCl₃CH(OH)₂, which is quite stable due to intramolecular H–bonding between two –OH groups. $$Cl \longrightarrow C + C = O \xrightarrow{H_2O} Cl_3C - C = OH$$ $$OH$$ #### 8. (a,b,d) TIPS/Formulae: Carbonyl compounds having $\alpha-H$ or $\alpha-D$ undergo aldol condensation. (a) $$^{\alpha}_{\text{CH}_3}_{\text{CHO}}$$ (b) $$CH_3\overset{\alpha}{C}H_2CHO$$ (c) $$\alpha$$ CHO (d) α CD₃CHO α (α -D present) 9. (d) $$CHO \xrightarrow{OH^-} COO^-$$ $$CHO \xrightarrow{intramolecular} Chi_2OH$$ $$CH_2OH \xrightarrow{H^+} CH_2OH$$ $$CH_2OH \xrightarrow{CH_2OH} CH_2OH$$ 10. (c) $$\bigcirc$$ + CH₃CH₂CH₂CI $\xrightarrow{AlCl_3}$ Isopropylbenzene (cumene), (P) $$O_{2} \longrightarrow O_{1} \longrightarrow O_{2} O_{2$$ 11. (b) $$\begin{array}{c} O \\ \parallel \\ C \\ H_3C \end{array} + NH_2OH \longrightarrow \begin{array}{c} O \\ \parallel \\ C \\ H_3C \end{array} \subset \begin{array}{c} OH \\ \parallel \\ C \\ CH_3 \end{array} = \begin{array}{c} HO \\ \parallel \\ C \\ CH_3 \end{array}$$ (same compound) $$\begin{array}{c} OH & HO \\ N &$$ - 12. (b,d) (A) Both are soluble in NaOH, hence inseparable. - (B) Only benzoic acid (C_6H_5COOH) is soluble in NaOH and NaHCO₃, while benzyl alcohol ($C_6H_5CH_2OH$) is not. Hence, **separable**. - (C) Although NaOH can enable separation between benzyl alcohol ($C_6H_5CH_2OH$) and phenol (C_6H_5OH) as only the later is soluble in NaOH. However, in NaHCO₃, both are insoluble. Hence, **inseparable**. - (D) α -Phenylacetic acid ($C_6H_5CH_2COOH$) is soluble in NaOH and NaHCO3. While benzyl alcohol ($C_6H_5CH_2OH$) is not. Hence, **separable**. 13. (a, c, d) $$H_{3}C$$ $$T$$ $$C$$ $$LiAlH_{4}$$ $$OH$$ $$CH_{3}CO)_{2}O$$ $$(CH_{3}CO)_{2}O$$ $$(W)$$ $$(no chiral centre)$$ $$(C_{10}H_{18}O_{4})$$ $$CHCl_3 + \overline{O}H \longrightarrow :CCl_2 + H_2O + Cl^-$$ $$OH \qquad O^-$$ $$\begin{array}{c} OH \\ \hline \\ CH_3 \end{array} + OH^- \longrightarrow \begin{array}{c} O^- \\ \hline \\ CH_3 \end{array}$$ $$\begin{array}{c} O \\ \hline \\ CCl_2 \\ \hline \\ CH_3 CH_3 \\ \hline CH_3 \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ CH_3 \\ \hline \\ CH_3 CH_$$ $$CH_{3} : CCl_{2} \quad H_{3}C$$ $$CHCl_{2} (minor)$$ 15. (c) Reaction I: $$CH_3$$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 $COONa + CHBr_3 + CH_3$ CH_3 Reaction II : $$CH_3$$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_2 CH_2 CH_2 CH_3 16. (a) $$(H_3)$$ (H_3) (H_4) $(H_4$ 17. (a, b, c) Aldehydes and α-Hydroxyketones show positive Tollen's test. 18. (b, c) OH OH OH CHCl₃/NaOH $$Q$$ (Major) Q CHO R (Minor) $$\begin{array}{c} \text{OH} \\ \text{CHO} \\ \hline \text{NaOH} \\ \hline \text{PhCH}_2\text{Br} \end{array}$$ $$\begin{array}{c} \text{O} - \text{CH}_2\text{Ph} \\ \text{CHO} \end{array}$$ Q is steam volatile not R. Q and R show positive test with 1% aqueous FeCl₃ solution. Q, R, S give yellow precipitate with 2, 4-dinitrophenyl hydrazine. 19. (c, d) LiAlH₄/(C₂H₅)₂O : Reduces to esters, carboxylic acid, epoxides and aldehydes and ketones. BH₃ in T.H.F : Reduces to -COOH and aldehydes into alcohols but do not reduce to esters and epoxides. NaBH₄ in C₂H₅OH: Reduces only aldehydes and ketones into alcohols but not to others. Raney Ni in T.H.F. : Do not reduce to -COOH, -COOR and epoxide but it can reduce aldehyde into alcohols. #### **E. Subjective Problems** 1. (i) $$H_{2}C \downarrow CH_{2} CH_{2}$$ $$CH_{2} CH_{2}$$ $$CH_{2} CH_{2}$$ $$CH_{2} CH_{2}$$ $$CH_{2} CH_{2}$$ Hexamethylenetetramine (Urotropine) (iv) $$\begin{array}{c} \text{2-Ethylbutanol-2} \\ \text{CH}_3 - \text{CH}_2 - \text{C} = \text{O} + \text{HCH} - \text{CHO} \\ \text{H} & \text{CH}_3 \end{array}$$ $$\xrightarrow{\text{NaOH}} \text{CH}_{3}\text{CH}_{2} - \overset{\text{OH}}{\overset{\text{|}}{\underset{\text{|}}{C}}} \text{CH} - \text{CHO}$$ $$\text{H} \text{CH}_{3}$$ (v) $$OCH_3$$ OCH_3 (vi) $C_6H_5COOH + CH_3MgI \longrightarrow CH_4 + C_6H_5COOMgI$ (vii) NOTE: Esters react with excess of RMgX to form 3° alcohols having two alkyl groups corresponding to R of RMgX. Thus $$\begin{array}{c} \text{C}_6\text{H}_5\text{CH}_2\text{COOCH}_3 \xrightarrow{\quad \text{(i) 2CH}_3\text{MgBr} \\ \quad \text{(ii) H}^+ \\ \quad \text{OH} \end{array} } \begin{array}{c} \text{C}_6\text{H}_5\text{CH}_2\text{C}(\text{CH}_3)_2 \\ \text{OH} \end{array}$$ $$\begin{array}{c} \text{Br} \\ \mid \\ \text{CH}_{3}. \text{ CHCOOH} & \xrightarrow{\text{(i) Alc. KOH}} \\ \text{(A)} & \xrightarrow{\text{(ii) H}^{+}} \text{ CH}_{2} = \text{CHCOOH} \\ \text{(B)} \end{array}$$ (ix) $$C_6H_5CHO + CH_3COOC_2H_5$$ $$\xrightarrow{\text{NaOC}_2\text{H}_5 \text{ in}} C_6\text{H}_5\text{CH} = \text{CHCOOC}_2\text{H}_5$$ absolute alcohol, heat (D) (Claisen condensation) (x) $$CH_2$$ CH_2 CH_2 CH_2 CH_2 $$\begin{array}{c} \text{anhy.} \\ \text{AlCl}_3 \end{array}$$ $$\begin{array}{c} \text{CH}_2 \\ \text{(H)} \end{array}$$ $$\begin{array}{c} \text{CH}_2 \\ \text{CH}_2 \\ \text{(I)} \end{array}$$ (xi) $$KCN + H_2SO_4 \longrightarrow KHSO_4 + HCN$$ $$CH_3CH_2 \longrightarrow CH_3CH_2 \longrightarrow H$$ $$H \longrightarrow H$$ $$(\pm)$$ $$\begin{array}{c} CH_3CH_2 \\ \longrightarrow \\ H \end{array} \begin{array}{c} OH \\ CH_2NH_2 \end{array}$$ (xii) $$O + Ph_3P = CH_2 \xrightarrow{\text{Wittig}} CH_2$$ (xiii) $$O$$ C—OH O HOCH₂ O Conc.H₂SO₄ O CH₂ (xiv) $$R-C = C-R + HCIO_4 \longrightarrow RCOOH$$ or $n-C_3H_7COOH$ (xv) ClCH₂CH₂CH₂COPh (xvi) $$H_3C - C - C - C_6H_5$$ $$\xrightarrow{\text{NaOH/H}_3O}^+ C_6H_5 - C - \text{COOH}$$ $$OH$$ **NOTE:** The reaction is an example of benzil-benzilic acid type rearrangement. (xvii) $$H_3C$$ $CH - O - CH_3 \xrightarrow{HI (Excess)} H_3C$ $CHI + CH_3I$ (xix) $$CH_3 - C - OC_2H_5 \xrightarrow{H^+} CH_3 - C - OH + C_2H_5OH A B$$ (Ester hydrolysis involves acyl-oxygen fission) (xx) $$CH_3$$ Br_2 , NaOH CH_3 (Haloform reaction) CH₃ $$(A) \qquad (B)$$ $$(i) H^{+} \text{ (hydrolysis)}$$ $$(ii) \Delta \text{ (-CO2)}$$ $$(C) C_{7}H_{12}O$$ 2. $$CH_3COOC_2H_5 + H_3CCOOC_2H_5 \xrightarrow{C_2H_5ONa} C_2H_5OH$$ ONa OH $$CH_3C = CHCOOC_2H_5 \xrightarrow{H^+} CH_3C = CHCOOC_2H_5$$ Ethyl acetoacetate 3. (i) HCHO $\xrightarrow{[O]}$ HCOOH $\xrightarrow{\text{Ca }(OH)_2}$ $\xrightarrow{\text{Methanal}}$ $$(HCOO)_2Ca \xrightarrow{(CH_3COO)_2 Ca} 2 CH_3CHO$$ Ethana (ii) $$CH = CH \xrightarrow{H_2SO_4} CH_3CHO \xrightarrow{KMnO_4} CH_3COOH$$ $$Acetylene \xrightarrow{Hg^{2+}} CH_3CHO \xrightarrow{(Oxi.)} CH_3COOH$$ $$\xrightarrow{\text{Ca(OH)}_2} (\text{CH}_3\text{COO})_2\text{Ca} \xrightarrow{\text{distil}} (\text{CH}_3)_2\text{CO}$$ Acetone (iv) $$CH_3.CHO \xrightarrow{HCHO/NaOH} CH_2CH_2CHO$$ ethanal OH $$\frac{\text{Dehydration}}{\text{(heat)}} \rightarrow \text{CH}_2 = \text{CHCHO}$$ propenal $$\xrightarrow{\text{hydrolysis}} \text{CH}_2 = \text{CH} - \text{CH} - \text{COOH}$$ $$\xrightarrow{\text{H}^+} \text{OH}$$ 2-hydroxy-3- butenoic acid (v) $$CH_3COOH \xrightarrow{PCl_5} CH_3COCI$$ $$\xrightarrow{C_6H_5MgBr} C_6H_5COCH_3$$ $$\xrightarrow{C_6H_5} CH_3 \xrightarrow{C_6H_5} CH_3 \xrightarrow{C_6H_5}$$ $$\xrightarrow{C_6H_5} CH_3 \xrightarrow{C_6H_5} CH_5$$ $$\xrightarrow{HOH} (C_6H_5)_2 CCH_3$$ $$\xrightarrow{OH} OH$$ $$\xrightarrow{heat} -H_2O} (C_6H_5)_2 C = CH_2$$ $$CrO_{3} \rightarrow C_{6}H_{5}COC_{6}H_{5} + HCOOH$$ (vi) $CH_{3}CH_{2} - C \equiv CH + Na^{+} NH_{2}^{-}$ $$CH_{3}CH_{2} - C \equiv C^{-} : Na^{+}$$ $$CH_{3}I \rightarrow CH_{3}CH_{2} - C \equiv C - CH_{3}$$ $$HgSO_{4} \rightarrow
CH_{3}CH_{2}CH_{2} - C - CH_{3}$$ 4. $CH_3COCl + AlCl_3 \rightarrow CH_3C^+ = O + AlCl_4^-$ $$\xrightarrow{\text{AlCl}_{4}^{-}} \text{COCH}_{3} + \text{HCl} + \text{AlCl}_{3}$$ Acetophenone **5.** Ozonolysis of (A) to acetone and an aldehyde indicates the following part structure of alkene (A): $$CH_3$$ $C = CHR$ CH_3 CH_3 $C = O + OHC.R$ aldehyde Alkene (A) #### As per problem: $$RCHO \xrightarrow{[O]} RCOOH[B] \xrightarrow{P/Br_2}$$ Bromo compound [C] $\xrightarrow{\text{H}_2\text{O}}$ Hydroxy acid [D] Structure of (D) is determined by the reaction : $$CH_3$$ CH_3 The compound (D) is obtained by hydrolysis of (C) with aqueous alkali since (C) is a bromo compound, therefore it has a bromo group where the compound (D) has a hydroxyl group. Therefore, structure of C is The compound (C) is formed by bromination of compound (B), therefore, the compound (B) is The compound (B) is formed by oxidation of an aldehyde therefore the structure of the aldehyde is $$CH_3$$ C CHO The aldehyde and acetone are formed by ozonolysis of alkene. Therefore, the double bond in alkene should be between the carbon atoms of the two carbonyl compounds (the aldehyde and acetone). Therefore, the compounds and the reactions are identified as $$CH_{3} \xrightarrow{C - C = C} CH_{3}$$ $$CH_{3} \xrightarrow{I \quad I \quad I} H$$ $$CH_{3} \xrightarrow{Ozonolysis} CH_{3} \xrightarrow{CH_{2} \quad C} CH_{3}$$ $$CH_{2} \xrightarrow{CH_{2} \quad C} CH_{2} + O = C \xrightarrow{CH_{3} \quad CH_{2} \quad C} CH_{3}$$ #### (i) TIPS/Formulae: Formic acid has no alkyl group i.e no α – H atom, hence it does not undergo halogenation, while acetic acid has a methyl group (i.e three α – H atoms) on which halogenation takes place. (ii) $$H-C-OH \rightleftharpoons H-C-O^-+H^+$$; $O O O$ $$CH_3-C-OH \rightleftharpoons CH_3-C-O^-+H^+$$ $$O O O$$ Presence of CH₃ gp in acetate ion shows +I effect and thereby intensifying charge on O⁻ of acetate ion which is thus destabilized. Thus formate ion is more stable than acetate ion or HCOOH loses proton more easily than CH₃COOH. #### (iii) NOTE: Alcohols show hydrogen bonding. The boiling points of carbonyl compounds are lower than the corresponding alcohols since former do not show intermolecular H-bonding like alcohols. $$C_4H_9 - O - H$$ $H - O - C_4H_9$ H-bonding between two butanol molecules Solubility of butanol in water is due to hydrogen bonding between butanol and water molecules (similarity to butanol). #### (iv) TIPS/Formulae: In weakly acidic medium carbonyl group is protonated to form conjugate acid. $$C = O + H^{+} \xrightarrow{\text{carbon become}} C - OH$$ carbon become more electron deficient In strongly acidic medium (pH < 3.5), the unshared pair of electrons of N of the reagent is protonated with the result nucleophile (NH₂NH₂) is converted to an electrophile (NH₂N⁺H₃)which cannot react. Hence in highly acidic medium, there is no protonation of the carbonyl group. (v) NOTE: Hypoiodite (¬OI) is a strong base than iodide ion. (O is more electronegative thus easily accommodate negative charge than I in I¬). Haloform reaction is base-promoted reaction (the first step involves removal of acidic hydrogen atom of acetone by base). Hypoiodite ion being strong base than iodide ion, can easily remove acidic hydrogen $$CH_3$$.CO. CH_3 + $\overline{}OI \rightarrow CH_3$.CO. $\overline{}CH_2$ + $\overline{}HOI$ (vi) In the acylium ion $(R-C \equiv O^+)$, each and every element has a complete octet, while in carbonium ion $(R-C^+ \equiv O)$, carbon bearing positive charge has uncomplete octet which makes it more reactive than the former. $$R:C \stackrel{\cdot}{:} O^+: \longleftrightarrow R:C^+=O:$$ Acylium ion atom. Carbonium ion (Carbon has only six electrons) #### (vii) TIPS/Formulae: Both of the resonating structures of benzoate ion are equivalent, while it is not so in phenoxide ion. Resonating structures of phenoxide ion Resonating structures of benzoate ion The benzoate ion is more stabilized because the negative charge on both structures is on the more electronegative oxygen atom, whereas in phenoxide ion, it is on the less electronegative carbon atoms. #### (viii) TIPS/Formulae: *o*-Hydroxybenzaldehyde has intramolecular H-bonding while the *p*-isomer has intermolecular H-bonding. Intramolecular H-bonding in o-isomer $$--HO \longrightarrow C = O --- H - O \longrightarrow C = O ---$$ Intermolecular H-bonding in the p-isomer (association) 7. (i) $$C_2H_2 \xrightarrow{H_2SO_4(dil.)} CH_3CHO \xrightarrow{H_2/cat.} CH_3CH_2OH$$ (ii) $$CH_3I + KCN (alc) \xrightarrow{-KI} CH_3CN$$ $\xrightarrow{H^+/H_2O} CH_3COOH$ 9. $CH_3CH_2CHO + [O] \xrightarrow{AgNO_3/NH_4OH} CH_3CH_2COOH + 2Ag$ $$\begin{array}{ccc} \text{CH}_3\text{CH}_2\text{COOH} & & \text{CH}_3\text{CH}_2\text{CO} \\ & + & \\ \text{CH}_3\text{CH}_2\text{COOH} & & \\ & &$$ #### 10. TIPS/Formulae: Acetaldehyde can be distinguished from acetone by using Tollen's reagent or Fehling solution or Schiff's reagent. Only acetaldehyde responds to all these tests. CH₃CHO + $$[Ag(NH_3)_2]^+OH^- \rightarrow RCOOH + Ag \downarrow$$ Tollen's reagent Silver mirror #### 11. TIPS/Formulae: The weaker a base better is its leavability. This is an example of nucleophilic substitution where the group $X(Cl, NH_2, OC_2H_5, OCOCH_3)$ is replaced by OH. The decreasing basic character of the four concerned groups is: $$NH_2^- > OR^- > OCOR^- > Cl^-$$ Hence Cl⁻ (the weakest base) will be lost most easily while NH_2^- (the strongest base) will be lost with most difficulty. Thus the order of hydrolysis becomes. $CH_3CONH_3 < CH_3COOC_3H_5 < (CH_3CO)_3O < CH_3COCI$. 12. Let us summarise the given facts. White ppt. $$\leftarrow \frac{\text{AgNO}_3}{\text{C}_6\text{H}_{13}\text{Cl}} \xrightarrow{\text{hot alc.}} \xrightarrow{\text{KOH}} \rightarrow (B) + (C) \xrightarrow{\text{(Isomeric alkenes, C}_6\text{H}_{12})} \xrightarrow{\text{O}_3} \rightarrow (A)$$ $$CH_3CHO + C_2H_5CHO + CH_3COCH_3 + (CH_3)_2CHCHO$$ (i) (ii) (iii) (iv) **NOTE THIS STEP:** With the help of structures of the four carbonyl compounds, (i) to (iv), we may write the structures of the two isomeric olefins (B) and (C). The two carbonyl compounds should be joined in such a way that the parent olefin has 6 carbon atoms. Two such possibilities are the combination of carbonyl compounds having 2+4 carbon atoms $[i.e.\ (i)+(iv)]$ and 3+3 carbon atom $[i.e.\ (ii)+(iii)]$. $$\begin{array}{c} \text{CH}_3\text{CHO} + \text{OHC.CH(CH}_3)_2 \xleftarrow{O_3} \quad \text{CH}_3\text{CH} = \text{CH.CH(CH}_3)_2 \\ \text{(i)} \qquad \qquad \text{Olefin B } (C_6\text{H}_{12}) \end{array}$$ $$C_2H_5CHO + OC(CH_3)_2 \leftarrow O_3 - C_2H_5CH = C(CH_3)_2$$ (ii) (iii) Olefin (C_6H_{12}) Thus the compound (A) should be a chloride that can eliminate a molecule of HCl to give B as well as C. $$\begin{array}{ccc} \text{C1 CH}_3 & \text{CH}_3 \\ | & | & | \\ \text{CH}_3\text{CH}_2\text{CH}.\text{CH}.\text{CH}_3 & \longrightarrow & \text{CH}_3\text{CH} = \text{CH}.\text{CH}.\text{CH}_3 \\ 2-\text{Methyl}-3-\text{chloropentare} & 4-\text{Methylpentene} -2 \\ \text{(A)} & \text{(B)} \end{array}$$ + $$CH_3$$ $CH_3.CH_2.CH = C.CH_3$ $2-Methylpentene-2$ (C) 13. (X) is hydrolysed to give an acid (Y) and an alcohol (Z) and thus X is an ester; R - C - OR'. $$R \xrightarrow{C} OR' \xrightarrow{HOH} RCOOH + R'OH$$ $$\downarrow Q$$ $$\downarrow$$ Oxidation of alcohol (Z) gives acid (Y). R'OH $$\xrightarrow{\text{Oxidation}}$$ RCOOH (Z) or RCH₂OH \longrightarrow RCOOH (\because R' is R—CH₂) Hence X, Y and Z are $$\begin{array}{c} \text{CH}_3\text{CH}_2 \ \text{C}-\text{OCH}_2\text{CH}_2\text{CH}_3 \ , \ \text{CH}_3\text{CH}_2\text{COOH} \,,
\\ \text{O} \\ \text{(Propyl propanoate)} \\ \text{X} \end{array} \quad \text{(Propanoic acid)}$$ 14. (i) $$CH_3 C-OC_2H_5$$ (iii) $CHO+CH_3CHO$ 15. (i) Empirical formula can be calculated as | Element | Percentage | Relative | Simplest | |---------|------------|--------------|----------| | | | no. of atoms | ratio | | C | 69.77 | 5.81 | 5 | | Н | 11.63 | 11.63 | 10 | | O | 18.60 | 1.16 | 1 | \therefore Empirical formula of compound is $C_5H_{10}O$ and empirical formula wt. = 86. Also molecular wt. = 86. - \therefore Molecular formula of compound is $C_5H_{10}O$. - (ii) Compound forms bisulphite addition compound and thus has carbonyl gp, *i.e.* aldehyde or ketone. - (iii) It does not reduce Fehling solution and thus it is not an aldehyde but a ketone. - (iv) It gives positive iodoform test and thus it has $$CH_3 - C - unit$$ (v) Above facts reveal that the compound is CH₃CH₂CH₂COCH₃ or (CH₃)₂CHCOCH₃ pentan-2-one 3-methylbutan-2-one #### 16. TIPS/Formulae: $$A \xrightarrow{\text{mild}} C \xrightarrow{\text{(i) 50\% KOH}} A + D$$ $$\downarrow CH_3COOH, H_2SO_4 \xrightarrow{\text{(ii) HCI}} CH_3COOH, H_2SO_4$$ $$Ester, B \xrightarrow{\text{(ii) FCI}_5} E$$ The above reactions lead to following conclusions. - (i) Reaction of A with CH₃COOH in presence of H₂SO₄ to form ester B indicates that A is an alcohol. - (ii) Reaction of C with 50% KOH followed by acidification to give alcohol A and the compound D seems to be the Cannizzaro reaction. Hence C must be an aldehyde and D must be an acid. The nature of C as aldehyde is again in consistent with the fact that it is obtained by the mild oxidation of A which has been established as an alcohol. - (iii) Structure of acid D is established by its given facts. $$\begin{array}{ccc} -\text{COOH} & \xrightarrow{\text{PCl}_5} -\text{COCl} & \xrightarrow{\text{NH}_3} -\text{CONH}_2 \\ \text{(D)} & & \text{(E)} \\ & \xrightarrow{-\text{H}_2\text{O}} & \text{HCN} \end{array}$$ Formation of HCN by the dehydration of E establishes that E is HCONH₂ and hence D is HCOOH. (iv) Thus the alcohol A produced along with HCOOH during Cannizzaro reaciton of C must be CH₃OH and hence C must be HCHO. Thus the various compounds are as below: (ii) P/Cl₂, NH₂CH₂COONH₄ (iii) $$CH_3$$ CH_2 CCH_2 CCH_3 CH_3 CH_3 CH_3 CH_3 (iv) (i) fuse with NaOH (ii) $$\operatorname{H}^{+}$$; #### 18. TIPS/Formulae: For this type of problem, students are advised to summarise the whole problem in the form of reactions. $$CH_{3}$$ $$H_{3}C.CH.CH_{2}CH_{3} \leftarrow H_{2} \qquad A \qquad \xrightarrow{\text{HBr} \atop \text{Markow.} \atop \text{addition}} B \atop \text{(having Br)}$$ $$B \xrightarrow{AgOH} C \xrightarrow{(C_5H_{12}O, \text{ alcohol})} \xrightarrow{(O)} D \xrightarrow{(\text{ketone})}$$ Let us draw some conclusions from the above set of reactions. - (i) The molecular formula C_5H_{10} (C_nH_{2n}) for A indicates that it is an alkene having one double bond. - (ii) Since the alcohol C on oxidation gives a ketone D, C must be a secondary alcohol and hence B must be a secondary bromide. - (iii) The structure of 2-methylbutane, the hydrogenated product of A, indicates that the secondary bromide must have following structure. $$CH_3$$ Br $CH_3 - CH - CH - CH_3$ (B) (iv) Thus the corresponding olefin A must have structure A which on Markownikoff addition of HBr gives the bromide B, the other possible alkene A' will not give B when HBr is addd on it according to Markownikoff rule. $$CH_3 \qquad CH_3 \\ CH_3-CH.CH = CH_2 \qquad CH_3C=CH.CH_3 \\ (A) \qquad (A')$$ Thus the reaction involved can be represented as below. $$\begin{array}{c} \text{CH}_3 & \text{CH}_3 \text{ Br} \\ \text{CH}_3\text{-CH-CH=CH}_2 & \xrightarrow{\text{HBr}} & \text{CH}_3\text{-CH-CH-CH}_3 \\ \text{3-Methylbutene-I,A} & \text{2-Bromo-3-methylbutane,B} \end{array}$$ $$\begin{array}{c} CH_3OH & CH_3O\\ \hline \xrightarrow{AgOH} CH_3-CH-CH-CH_3 & (O) & CH_3-CH-C-CH_3\\ \hline & 3-Methylbutanol-2,C & 3-Methylbutanone-2,D \end{array}$$ 19. The compound A, a ketone, undergoes haloform reaction. Thus, it must contain CH₃CO group. The compound C gives mono-ozonide D, which shows that the compound C contains a double bond. Since the hydrolysis of D gives only acetaldehyde, the compound C would be an alkene having four carbon atoms, i.e. $$CH_3 - CH = CH - CH_3$$ (butene-2). The compound B is obtained by the reduction of compound A (which contains CH₃CO group). Hence, the compound B would be an alcohol, which on heating with H₂SO₄ gives (C). Hence B and A would be $$\begin{array}{cccc} CH_3-CH-CH_2-CH_3 & CH_3-C-CH_2-CH_3 \\ & & \parallel \\ OH & O \\ butan-2-ol\left(B\right) & butan-2-one\left(A\right) \end{array}$$ The reactions involved: (A) $$\xrightarrow{\text{reduction}}$$ (B) $\xrightarrow{\text{conc. H}_2\text{SO}_4}$ CH₃ - CH = CH.CH₃ #### 20. TIPS/Formulae: The given set of reactions can be represented as below: Aq. NaOH $$\xrightarrow{\text{Gas B}}$$ Sod. salt of acid A $\xrightarrow{\text{High temp.,}}$ Sod. salt of acid A $\xrightarrow{\text{(i) NaOH (heat)}}$ Dibasic acid, C Calculation of molecular formula of C % of H = $$\frac{2}{18} \times \frac{0.08}{0.40} \times 100 = 2.22\%$$ % of C = $$\frac{12}{44} \times \frac{0.39}{0.40} \times 100 = 27.30\%$$ % of $$O = 100 - (2.22 + 27.30) = 71.48\%$$ By usual method, empirical formula of acid $C = CHO_2$ Eq. wt. of acid C = $$\left(\frac{1.0}{0.71} \times 108\right) - 107 = 45$$ Mol. wt. of acid $C = 45 \times 2 = 90$ $$\therefore$$ Mol. formula of $C = C_2H_2O_4$ Since it is dicarboxylic acid, it must have two -COOH groups. Going back, compound C must be produced from sodium oxalate which in turn is produced from sodium formate. Hence A is formic acid and B is CO₂. Thus the complete series of reactions can be written as below. $$2NaOH(aq.) \xrightarrow{2CO_2(B)} \xrightarrow{HCOONa} + HCOONa$$ #### 21. TIPS/FORMULAE: Molecular weight of the monobasic acid (RCOOH) indicates that the R- should be CH_3 - i.e., acid F should be acetic acid (CH_3COOH , mol. wt. 15+45). Thus compound D must be acetaldehyde CH_3CHO , and compound B which on oxidation gives CH_3CHO must be ethanol, CH_3CH_2OH . Acetaldehyde (D) on treating with aqueous alkali will undergo aldol condensation. $$\begin{array}{c} \text{OH} \\ 2\text{CH}_{3}\text{CHO} \xrightarrow{\text{OH}^{-}} \text{CH}_{3}\text{CHCH}_{2}\text{CHO} \xrightarrow{\text{heat}} \end{array}$$ (D) $$\begin{array}{ll} CH_{3}CH = CHCHO & \xrightarrow{H_{2}/} CH_{3}CH_{2}CH_{2}CH_{2}OH \\ Crotonaldehyde, (E) & Butanol-l, (C) \end{array}$$ Nature of A. Thus it is evident that reduction of A with LiAlH₄ gives two alcohols; B (ethanol) and C (butanol). Hence A must be an ester i.e., ethyl butanoate (CH₃CH₂CH₂COOC₂H₅). $$\begin{array}{c} \text{CH}_3\text{CH}_2\text{COOC}_2\text{H}_5 & \xrightarrow{\text{LiAlH}_4} \\ \text{Ethyl butanoate, A} \end{array}$$ $$CH_3CH_2CH_2CH_2OH + C_2H_5OH$$ Butanol, C Ethanol, B #### 22. Empirical formula of A and B. | | Relative
No. of atoms | Simplest ratio | |---|----------------------------|-------------------------| | % of $C = \frac{12}{44} \times \frac{0.308}{0.108} \times 100 = 77.7$ | $7\frac{77.77}{12} = 6.48$ | $\frac{6.48}{0.92} = 7$ | | % of H = $\frac{2}{18} \times \frac{0.072}{0.108} \times 100 = 7.4$ | $0\frac{7.40}{1} = 7.40$ | $\frac{7.40}{0.92} = 8$ | | \therefore % of O = 100 – (77.77 + 7.40) | $\frac{14.83}{16} = 0.92$ | $\frac{0.92}{0.92} = 1$ | | = 14.83 | | | \therefore Empirical formula of A and B = C_7H_8O **Nature of (A):** Since A is insoluble in NaOH and NaHCO₃, it can't have –OH and –COOH groups. Further the reaction of A with conc. HI to give compounds C and D separable by means of ammonical AgNO₃ and solubility of D in NaOH indicates that C and D are alkyl halide and phenol respectively. Thus A is an ether i.e. it is C_6H_5 .O.CH₃ which explains all the given reactions. OCH₃ $$\xrightarrow{\text{conc. HI}} \xrightarrow{\text{conc. HI}} + CH_3I \xrightarrow{C_2H_5OH} AgNO_3 \rightarrow AgI$$ Anisole (A) **Nature of (B):** Solubility of B (C_7H_8O) in NaOH indicates that it is a phenol which is further confirmed by its reaction with bromine water to give compound E of molecular formula, $C_7H_5OBr_3$. Further bromination of B to give tribromo product indicates that it is *m*-cresol. 23. (i) $$C_6H_5COOH \xrightarrow{PCl_5} C_6H_5COCl \xrightarrow{NH_3}$$ (C) $C_6H_5CONH_2 \xrightarrow{P_2O_5} C_6H_5CN \xrightarrow{H_2/Ni} C_6H_5CH_2NH_2$ (D) (ii) $H_3CCH = CHCHO \xrightarrow{NaBH_4} CH_3CH = CH-CH_2OH$ (F) $$\xrightarrow{HCl} CH_3CH = CHCH_2Cl$$ (G) $$\xrightarrow{KCN} CH_3CH = CHCH_2COOH$$ #### **24.** For empirical formula of (Y) | Element | % | Relative
no. of atoms | Simplest ratio | |---------|-------|--------------------------|----------------| | C | 49.31 | 4.10 | 3 | | Н | 9.59 | 9.59 | 7 | | N | 19.18 | 1.37 | 1 | | O | 21.92 | 1.37 | 1 | \therefore Empirical formula of (Y) is C_2H_7NO . (Y) reacts with Br_2 and NaOH to give (Z) and (Z) reacts with HNO_2 to give ethanol and thus (Y) seems to have — $CONH_2$ group. $$CH_3CH_2CONH_2 + Br_2 + 4KOH \longrightarrow$$ $$\begin{array}{c} \text{CH}_3\text{CH}_2\text{NH}_2 \xrightarrow{\quad \text{HNO}_2 \quad} \text{CH}_3\text{CH}_2\text{OH} \\ \text{(Z) basic} \qquad \qquad \text{ethanol} \end{array}$$ Y is formed from (X) having Cl on treatment with NH₃ and so (X) is CH₃CH₂COCl i.e. propanoyl chloride. $CH_3CH_2COC1 + NH_3 \rightarrow CH_3CH_2CONH_2$ (X) (Y) #### 25. TIPS/Formulae: - (i) Since E (C₃H₆O) forms a 2, 4-dinitrophenylhydrazone but does not reduce Tollen's reagent and Fehling solution, it must be a ketone, CH₃.CO.CH₃. - (ii) The compound E (established as ketone) is obtained by heating compound B with Ca(OH)₂, B must be CH₃COOH. - (iii) Compound B is obtained by the oxidation of D, the latter must be ethyl alcohol, C₂H₅OH and hence C must be ethyl acetate, CH₃COOC₂H₅. - (iv) Since compound A when treated
with ethyl alcohol gives acetic acid (B) and ethyl acetate (C), it must be acetic anhydride. $$\begin{array}{c} \text{CH}_3\text{CO.O.COCH}_3 \ + \ \text{C}_2\text{H}_5\text{OH} \longrightarrow \text{CH}_3\text{COOH} \ + \ \text{CH}_3\text{COOC}_2\text{H}_5 \\ \text{(A)} & \text{(B)} & \text{(C)} \\ \\ \text{CH}_3\text{COCH}_3 \ \xleftarrow{\text{Ca(OH)}_2} \\ \text{(E)} & \xrightarrow{\text{heat}} & \text{CH}_3\text{COOH} \ + \ \text{C}_2\text{H}_5\text{OH} \\ \\ \text{(E)} & \xrightarrow{\text{oxidation}} \end{array}$$ $$\begin{array}{cccc} \operatorname{PCl}_{5} &+& \operatorname{SO}_{2} &\longrightarrow \operatorname{SOCl}_{2} &+& \operatorname{POCl}_{3} \\ \operatorname{SOCl}_{2} &+& \operatorname{CH}_{3} \operatorname{COOH} &\longrightarrow \operatorname{CH}_{3} \operatorname{COCl} &+& \operatorname{SO}_{2} &+& \operatorname{HCl} \\ \operatorname{(A)} && \operatorname{(C)} && & \\ \end{array}$$ $$\begin{array}{cccc} \operatorname{COH}_{3} \operatorname{COCl} + (\operatorname{CH}_{3})_{2} \operatorname{Cd} &\longrightarrow \operatorname{2CH}_{3} - \operatorname{CO} - \operatorname{CH}_{3} + \operatorname{CdCl}_{2} \\ \operatorname{(C)} && & & & \\ \end{array}$$ #### 28. TIPS/Formulae: $$A \xrightarrow{\text{dry KOH}} B + Ct$$ $$Z_{\text{Iow temp.}} + B_{\text{deep red}}$$ $$B_{\text{deep red}} + Ct$$ $$CH_{3}CHO$$ The reaction of gas (A) with but-2-ene followed by treatment with Zn/H_2O gives CH_3CHO . This shows that the gas (A) is ozone (O_3) . $$CH_{3}CH = CHCH_{3} + O_{3} \longrightarrow CH_{3}CH \qquad CHCH_{3}$$ $$O \longrightarrow O$$ $$CHCH_{3} \longrightarrow CH_{3}CH \longrightarrow CHCH_{3}$$ $$O \longrightarrow O$$ #### Reaction of ozone with KOH. 3KOH + $$2O_3 \longrightarrow 2KO_3 + KOH.H_2O + \frac{1}{2}O_2 \uparrow$$ (A) Pot. ozonide, B (Red colour) #### 29. TIPS/Formulae: $$\begin{array}{c} C_8H_6 & \xrightarrow{\text{dil. H}_2\text{SO}_4} \to B \xleftarrow{\text{anhydrous. AlCl}_3} \text{RCOCl} + C_6H_6 \\ \text{(A)} & & \downarrow^{\text{I}_2, \text{ aq. KOH}} \end{array}$$ $$C + \text{Yellow compound (D)}$$ (i) Formation of (B) from benzene and acid chloride in presence of anhydrous AlCl₃ (Friedel-Craft reaction) indicates that it is a ketone, C₆H₅COR. - (ii) Further the ketone (B) reacts with alkaline iodine forming yellow compound (D) (haloform reaction). This indicates that one of the alkyl groups in ketone B is CH₃. Hence it should be C₆H₅.CO.CH₃. - (iii) Since ketone (B) is also formed from the hydrocarbon C_8H_6 (A) by reaction with dil. H_2SO_4 and $HgSO_4$, the hydrocabon (A) must have an acetylenic hydrogen atom, i.e. $\equiv C H$ grouping. Hence (A) must be $C_6H_5C \equiv CH$. Thus compounds (A) to (D) are $$C_6H_5.C \equiv CH \quad C_6H_5.CO.CH_3 \quad C_6H_5COOH \quad CHI_3$$ (A) (B) (C) (D) Formation of (B) from (A) $$C_{6}H_{5}.C \equiv CH \xrightarrow{\text{dil.H}_{2}SO_{4}} [C_{6}H_{5} - C = CH_{2}]$$ Phenylacetylene (A) $$\xrightarrow{\text{rearranges}} C_{6}H_{5}.CO.CH_{3}$$ Acetophenone (B) **30.** (i) β-Keto acids are unstable and undergo decarboxylation most readily. 31. $$\begin{array}{c} CH_3 \\ CH_3 \end{array} \xrightarrow{\text{dil KMnO}_4} \begin{array}{c} CH_3 \\ OH \\ CH_3 \end{array} \xrightarrow{\text{HIO}_4} \begin{array}{c} CH_3 \\ OH \\ CH_3 \end{array} \xrightarrow{\text{CH}_3} \begin{array}{c} CH_3 \\ CH_2 \end{array}$$ The last step is intramolecular aldol condensation. **32.** We know that esters on treatment with excess of methyl magnesium chloride either give secondary alcohols (from alkyl formates) or tertiary alcohols (from esters other than formates). However, tertiary alcohols are not easily oxidised, hence the alcohol should be secondary alcohol and thus ester is alkyl formate. Hence ester A (C₄H₈O₂) should be HCOOC₃H₇. Thus the various reactions and nature of compound B can be established as below. O OMgBr C-OC₃H₇ CH₃MgBr CH₃ - C-OC₃H₇ H OH H+ $$CH_3$$ CH₃ CH₃ CH₃ - C OC₃H₇ H CH_3 CH₃ CH₃ CH₃ - C OH CH_3 CH₃ COOH CH_3 CH₃ CH_3 COOH - **33.** Following informations are provided by the problem. - (i) Since aldehyde A ($C_{11}H_8O$) gives C_6H_5CHO on ozonolysis, it must have a benzene nucleus and a side chain. The side chain should have five carbon ($C_{11}-C_6=C_5$), three hydrogen ($H_8-H_5=H_3$) and one oxygen atom, i.e., it should be C_5H_3O . Further the compound A has an aldehydic group, so the side chain can be written as C_4H_3CHO . - (ii) Formation of two moles of B from one mole of A by ozonolysis indicates that the side chain must possess two unsaturated linkages, one of which must be alkyne type, suggested by very low number of hydrogen atoms. - (iii) Further since the aldehyde A does not undergo aldol condensation, α -hydrogen is absent and hence triple bond should be present between C_2 and C_3 . - (iv) Thus the side chain C_4H_2CHO of A can be written as $CH = CH C \equiv C CHO$. - (v) Thus compound A should possess following structure which explains all the given reactions. $$\begin{array}{c|c} CH=CH-C\equiv C-CHO & CHO \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline (i)O_3 & & \\ \hline & & \\ \hline (ii)H_2O & & \\ \hline & & \\ \hline & & \\ \hline (DOH & \\ \hline & &$$ 34. $$C_6H_5 - CH - C = CH \xrightarrow{H^+} C_6H_5 - CH - C = CH + OH_2$$ $$\xrightarrow{-H_2O} C_6H_5 \xrightarrow{+} CH - C = CH \rightarrow C_6H_5CH = C = \overset{+}{C}H$$ $$\xrightarrow{H_2O} C_6H_5CH = C = CH \xrightarrow{-H^+} C_6H_5CH = \overset{-}{C} = CH$$ $$\xrightarrow{\oplus OH_2} C_6H_5CH = CH - CH = O$$ 35. $$(C) C_6H_5CHO$$ Base CHC₆H₅ CHC₆H₅ CHC₆H₅ (i) LiAlH₄ (ii) H⁺, Δ (D) LiAlH₄ reduces only ketonic group to 2° alcoholic group without affecting double bond. # 36. D $C = C \stackrel{D}{\swarrow} C \stackrel{(4).C_6H_5CO_3H}{\longleftrightarrow}$ $$\begin{array}{c} D \\ C \\ C \\ H_{3}C \\ CH_{3} \end{array}$$ 37. $$C_2H_5OC$$ C_2H_5OC CH_3 $$C_2H_5OC$$ C_2H_5OC C_2H_5OC COC_2H_5 $$C_2H_5OC$$ C_2H_5OC COC_2H_5 $$COC_2H_5OC$$ $$COC_2H_5$$ $$COC_2H_5OC$$ COC_2H_5 $$COC_2H_5$$ $$CO$$ #### 38. TIPS/Formulae: The given reaction can be summarised as below: $$\begin{bmatrix} A \\ C_6H_{10}O \end{bmatrix} \xrightarrow{(i) CH_3MgBr} \begin{bmatrix} B \\ \downarrow \\ HBr \end{bmatrix} \xrightarrow{O_3} \begin{bmatrix} C \\ \downarrow \\ D \end{bmatrix}$$ $$\begin{bmatrix} D \\ \end{bmatrix}$$ $$\begin{bmatrix} D \\ \end{bmatrix}$$ Conclusions from the set of reactions (i) Carbon-hydrogen ratio of A indicates that it is a cyclic compound - (ii) Reaction of A with CH₃MgBr indicates that it should have a ketonic group. - (iii) As B undergoes ozonolysis to form C, It must have a double bond, and C must have two carbonyl groups. - (iv) Reaction of C (a dicarbonyl compound) with a base gives a cyclic compound, it indicates that intramolecular condensation have occurred during this conversion. Thus A is cyclohexanone which explains all the given reactions. 41. Ba $*$ O₃ + H₂SO₄ \longrightarrow * CO₂ \uparrow $$CH_2 = CHBr \xrightarrow{(i)Mg} CH_2 = CHMgBr \xrightarrow{(ii){}^{*}$$ CH₂ = CH * COOH $\xrightarrow{LiAlH_4} CH_2 = CH.CH_2OH$ $$(Y) \qquad (Z)$$ Formation of CH₂O from (Z) $$CH_{2} = CH.\overset{*}{C}H_{2}OH \xrightarrow{H^{+}}$$ $$[CH_{2} = CH.\overset{*}{C}H_{2} \longleftrightarrow \overset{\oplus}{C}H_{2} - CH = \overset{*}{C}H_{2}] \xrightarrow{Br^{-}}$$ BrCH₂.CH = $$\overset{*}{C}$$ H₂ $\xrightarrow{O_3} \overset{*}{C}$ H₂ = O 42. (i) As both the compounds **A** and **B** form a silver mirror with Tollen's reagent, they have aldehydic group in their structure. In these compounds, **B** gives positive test with FeCl₃ solution, so it must also have phenolic group in its structure. Hence, compound \mathbf{A} is p-methoxybenzaldehyde and \mathbf{B} is p-hydroxyphenylacetaldehyde. - (ii) Compound C gives positive iodoform test, so it must have CH₃CO– group in its structure. Hence compound C is p-hydroxyphenylmethyl ketone. - (iii) Compound **D** is readily extracted in aqueous NaHCO₃, so it must have -COOH group in its structure. So, compound **D** is *p*-methylbenzoic acid. - (iv) Compound E on hydrolysis gives 1,4-dihydroxybenzene. So, compound E is *p*-hydroxyphenyl vinyl ether. Hence the structures of all the five compounds are: CHO $$CH_2CHO$$ $COCH_3$ OCH₃ OH OH COOH O— $CH = CH_2$ CH_3 OH CH_3 OH CH_3 OH CH_3 OH CH_3 OH CH_3 OH 43. TIPS/Formulae: Meso forms are optically inactive. $$\begin{array}{c} CH_{3}CH_{2} - C \equiv C - H \\ \hline \begin{array}{c} (i) \text{ NaNH}_{2} \\ \hline (ii) \text{ NaNH}_{2} \\ \hline \\ (ii) \text{ CH}_{3}\text{CH}_{2}\text{Br} \end{array} \\ CH_{3}CH_{2} - C \equiv C - CH_{2}CH_{3} \\ \hline \begin{array}{c} (X) \\ CH_{3} - CH_{2} \\ \hline \\ (cis\text{-addition of H atoms}) \end{array} \\ \begin{array}{c} (X) \\ CH_{3} - CH_{2} \\ \hline \\ CH_{2} - CH_{3} \\ \hline \end{array}$$ (D) Ċ.CH₂ Z is in meso form having plane of symmetry. The upper half molecule is mirror image of the lower half molecule. The molecule is, therefore, optically inactive due to internal compensation. **44.** The two enantiomers of 2-phenylpropanoic acid in the racemic mixture react with (+) – alcohol to form two diastereomers. (A) and (B) are diasteromers. The bonds attached to the chiral carbon in both the molecules are not broken during the esterification reaction. (+) – Acid reacts with (+) –alcohol to give an (+)–(+) –ester, while (-) acid reacts with (+) alcohol to give (-)–(+) –ester. These two esters are diastereoisomers. **45.** $$C_9H_7O_2CI \xrightarrow{KMnO_4} COOH$$ Hence compound should have following part structure or $$C_3H_3O_2$$ $COCH_2CHO$ C The enolic form of the compound is more stable than the keto form due to hydrogen bonding. 46. $$H_2C = O + O = C - CH = O + O = CH_2$$ $$CH_3$$ $$H_2C = C - CH = CH_2$$ Thus the possible polymer should be $$\begin{array}{c} \operatorname{CH}_{3} \\ n\operatorname{CH}_{2} = \operatorname{C} - \operatorname{CH} = \operatorname{CH}_{2} \\ \end{array} \longrightarrow
\left(\begin{array}{c} \operatorname{CH}_{3} \\ \operatorname{CH}_{2} - \operatorname{C} = \operatorname{CH} - \operatorname{CH}_{2} \end{array}\right)_{n}$$ Structure of all cis configuration of the polymer. $$\begin{pmatrix} CH_2 \\ H \end{pmatrix} C = C \begin{pmatrix} CH_2 \\ CH_3 \end{pmatrix}_n$$ #### All cis form #### F. Match the Following - 1. (A) r, s; (B) p, q; (C) p, q, r; (D) p, s compound (A) does not have carbon, hence does not responds (p) test. - 2. (a) (1) $$C_6H_5\dot{C}H_2$$ $C_6H_5\dot{C}H_2 + CO_2 + CH_3 - \dot{O}$ (3) $C_6H_5\dot{C}H_2$ $C_6H_5\dot{C}H_2 + CH_3 - \dot{O}$ $C_6H_5\dot{C}H_2$ $C_6H_5\dot{C}H_2 + CH_3 - \dot{O}$ $C_6H_5\dot{C}H_2 - \dot{O}$ $C_6H_5\dot{C}H_2 - \dot{O}$ $C_6H_5\dot{C}H_2 - \dot{O}$ $C_6H_5\dot{C}H_2 - \dot{O}$ (4) $$C_6H_5$$ C_6H_3 C_6H_5 C_6H_5 C_6H_5 C_6H_3 $$C_6H_5$$ O $CH_3 \longrightarrow C_6H_5$ $O + CH_3 - O$ #### G. Comprehension Based Questions 1. (d) $$CH_3 - CH_2 - C \equiv C - CH_2 - CHO$$ $Hex-3-ynal$ $$\frac{1.NaBH_4}{2.PBr_3} \cdot CH_3 - CH_2 - C \equiv C - CH_2 - CH_2Br$$ or $Me - CH_2Br$ Sodium borohydride reduces –CHO Selectively into –CH₂OH (a) Me $$CH_2Br$$ "I" $$\frac{1 \text{ Mg/Ether}}{2 \cdot CO_2}$$ $3 \cdot H_3O^+$ Me CH_2COOH "J" $$\frac{\text{"K"}}{} Me \qquad CH_2COCI$$ Thus "K" is $SOCI_2$ 2. 3. (c) Me $$\longrightarrow$$ CH₂COCl $$\xrightarrow{\text{H}_2}$$ Me \longrightarrow CHCHO $$\xrightarrow{\text{(quinoline)}}$$ Me \longrightarrow CHCHO It is Rosemmund reaction. Simultaneously the reagent H_2 -Pd also reduces carbon-carbon triple bond to double bond (*syn* -addition) giving *cis* product. #### For 4-6. Iodoform test of compound **P** points out that **P** has $-COCH_3$ group which shows that it may be either option (a) or (b) of Q. 16. Further since the dicarbonyl compound **R** has at least one α -H atom w.r.t to one of the carbonyl groups which is possible when **R** is produced from (b) of Q. 18, (a) option of Q. 16 will give dicarbonyl compound having two -CHO, none of which has α -H atom. * Structure of **R** would be **R'** when **P** is (A) $$\bigcap_{(A)} Me \longrightarrow \bigcap_{Me \ Me} Q'$$ $$\begin{array}{c} O_3/Zn \\ \hline H_2O \end{array}$$ $$\begin{array}{c} CHO \\ Me \end{array}$$ $$\begin{array}{c} Me \end{array}$$ $$\begin{array}{c} R' \end{array}$$ 4. (b) 5. (a) 6. (b) For 7-9. Let us summarize the given facts of the problem. $$P + Q \xrightarrow{\text{aq. K}_2\text{CO}_3} R \xrightarrow{\text{HCN}} S$$ $$(2 \text{aldehydes}) \xrightarrow{\text{H}_3\text{C}} OH$$ $$\xrightarrow{\text{H}^+/\text{H}_2\text{O}} H_3\text{C} \xrightarrow{\text{HG}} H_3\text{C}$$ Structures of P, Q, R and S can be established on going backward from the known final product. 7. (b) 8. (a) For 10 - 11 10. (c) 11. (a) Reactions of compound J ($C_9H_8O_2$) indicates that it has C = C linkage and – COOH group. Thus, J can be written as C_6H_5CH = CH COOH. Since, J is unsaturated carboxylic acid and it is formed by the reactions of compound I with ($CH_3CO)_2O$ and CH_3COONa , compound I should be an aldehyde (recall Perkin reaction). Thus the whole series of reactions can be written as below. CHO $$(CH_3CO)_2O \\ CH_3COONa$$ I $$CH \xrightarrow{(i) H_2 - PQ} CH_2$$ $$COOH COCI$$ $$(K)$$ $$(K)$$ $$(CH_3CO)_2O \\ CH_2$$ $$CH_2$$ $$CH_2$$ $$COCI$$ For 12-13. 12. (b) HOOC $$C = C$$ $COOH$ Meso (S), optically inactive (Racemic Mixture), optically inactive 13. (a) HOOC-CH=CH-COOH $$\xrightarrow{\text{H}_2/\text{Ni}}$$ O Q $$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$ 14. (c) $$C_8H_6 \xrightarrow{\text{Pd-BaSO}_4} \bigodot \frac{\text{i. B}_2H_6}{\text{ii. H}_2O_2, NaOH, H}_2O} \bigodot \bigcirc$$ 15. (d) $$C_8H_6 \xrightarrow{H_2O}_{HgSO_4}$$, H_2SO_4 i. Et MgBr, H_2O ii. H^+ , Heat #### H. Assertion & Reason Type Questions #### 1. (d) TIPS/Formulae: Acetate ion is reasonance stabilized while methoxide ion is not. Hence, acetate ion is less basic than methoxide ion. 2. (c) Haloform reaction is undergone only by ketones, CH_3COOH has 3 α -hydrogens. #### 3. (a) TIPS/Formulae: Ozonide can be reduced by $(CH_3)_2S$ to give carbonyl compounds and dimethyl sulphoxide. $$R_2C$$ CR_2 CR_2 CR_3 CR_2 CR_3 CR_2 CR_3 CR_3 CR_4 CR_3 CR_4 CR_5 4. (d) p-Hydroxybenzoic acid has higher boiling point than o-hydroxybenzoic acid due to intermolecular hydrogen bonding. Thus, statement-1 is false. o-Hydroxybezoic acid shows intramolecular H-bonding thus, statement-2 is true. #### I. Integer Value Correct Type The number of intra molecular aldol condensation products (α , β –unsaturated carbonyl compound formed from Y is 1. 2. All carboxylic acids and phenols are soluble in aqueous NaOH. Four compounds are soluble in aqueous NaOH. No. of -COOH group is '2' **4. (5)** General molecular formula for ketones is $C_nH_{2n}O$ $\therefore C_nH_{2n}O = 100 \text{ or } 12n + 2n + 16 = 100, n = 6$ Possible isomeric ketones with 6 carbon atoms are Note that only isomer III has a chiral carbon so on reduction with NaBH₄ it will give diastereomeric alcohols, while all other five isomers will give racemic mixture. 5. (4) # Section-B JEE Main/ AIEEE # 1. (c) $CH_3CH_2COOH \xrightarrow{Cl_2} CH_3CHCICOOH$ $$\xrightarrow{\text{alc.KOH}} \text{CH}_2 = \text{CHCOOH}$$ Acrylic acid - **2. (b)** Aldehydic group gets oxidised to carboxylic group. Double bond breaks and carbon gets oxidised to carboxylic group. - 3. (c) 2,4,6-trinitrophenol is also known as picric acid. - **4.** (a) LiAlH₄ can reduce COOH group and not the double bond. $$CH_2 = CH - COOH \xrightarrow{LiAlH_4} CH_2 = CH - CH_2OH$$ - 5. (c) There is no reaction hence the resultant mixture contains CH₃ COOC₂H₅ + NaCl. - 6. (a) $CH_3 \overset{O}{C} Br \xrightarrow{(i)CH_3MgI} CH_3 \overset{C}{C} OH \overset{C}{C} + G \overset{C}{C} OH \overset{C}{C} + G \overset{C}{C} OH \overset{C}{C} + G \overset$ - 7. (d) It is Clemmensen's reduction $$CH_3 - C - CH_2 - CH_3 \xrightarrow{Zn-Hg} CH_3CH_2 - CH_2CH_3$$ Bu tan e-2-one (Butane) 8. (b) This reaction is known as cannizzaro's reaction. In this reaction benzaldehyde in presence of 50%. NaOH undergoes disproportionation reaction and form one mol of Benzyl alcohol (Red. product) and one mole of sod. benzoate (ox. product) CHO 50% NaOH $$CH_2OH$$ $$+$$ $$COO^{\dagger}Na^{-}$$ 9. (c) $pK_a = -\log K_a$; HCOOH is the strongest acid and hence it has the highest K_a or lowest pK_a value. 10. (c) $$OH \rightarrow OH \rightarrow N(CH_3)_2$$ $$\xrightarrow{-H_2O} \rightarrow N(CH_3)_2$$ enamine **11. (a) NOTE**: Addition of HCN to carbonyl compounds is nucleophilic addition reaction. The order of reactivity of carbonyl compounds is Aldehydes (smaller to higher) Ketones (smaller to higher), Then **NOTE:** The lower reactivity of Ketones is due to presence of two alkyl group which shows +I effect. The reactivity of Ketones decreases as the size of alkyl group increases. 12. (a) The correct order of increasing acid strength CF₃. COOH> MeOCH₂COOH> CH₃COOH > (Me)₂CH.COOH [NOTE: Electron withdrawing groups increase the acid strength and electron donating groups decrease the acid strength.] **13. (c)** Fruity smell is due to ester formation which is formed between ethanol and acid. $$CH_3COOH + C_2H_5OH \xrightarrow{Conc. H_2SO_4} CH_3COOC_2H_5 + H_2O.$$ 14. (c) $CH_3CHCl_2 \xrightarrow{aq.KOH} CH_3CH(OH)_2$ $$\xrightarrow{-H_2O}$$ CH₃CHO 15. (a) $$\begin{array}{c} O \\ \parallel \\ Ph - C - H + OH \end{array}$$ $$\begin{array}{c} \hline Ph - C - H \\ OH \end{array}$$ $$\begin{array}{c} O \\ Ph - C - H \\ Slow \end{array}$$ **16. (d)** Phenol gives a violet colour with neutral ferric chloride solution whereas benzoic acid does not give this test. 17. (a)
$$CCl_3CHO + NaOH \longrightarrow CCl_3CH_2OH + CCl_3COONa$$ 2,2,2 - trichloroethanol In Cannizzaro's reaction the compounds which do not contain α -hydrogen atoms undergo oxidation and reduction simultaneously i.e undergo disproportion ation and form one molecule of sodium salt of carboxylic acid as oxidation product and one molecule of alcohol as reduction product. 18. (c) The electron withdrawing (-I) group - Cl withdraws electrons from O - H bond and thus helps the cleavage of the O - H bond releasing hydrogen as H⁺. - CH₃CO Cl + Na OC₂H₅ 19. (d) > CH₂COOC₂H₅+NaCl ethyl sodium ethoxide ethanoyl chloride ethanoate - 20. (a,c) Both formaldehyde and acetaldehyde give silver mirror with Tollen's reagent. - 21. Iodoform test is given by methyl ketones, acetaldehyde and methyl secondary alcohols. isobutyl alcohol is a primary alcohol hence does'nt give positive iodoform test. 22. Aldehydes and ketones can be reduced to hydrocarbons by the action (i) of amalgamated zinc and concentrated hydrochloric acid (Clemmensen reduction), or (b) of hydrazine (NH₂NH₂) and a strong base like NaOH, KOH or potassium tert-butoxide in a high-boiling alcohol like ethylene glycol or triethylene glycol (Wolf-Kishner reduction) CH=CH-COCH₃ $$\xrightarrow{\text{NH}_2\text{NH}_2/\text{OH}^-}$$ Wolf-kishner Reduction CH=CH-CH₂-CH₃ -OH group and alkene are acid-sensitive groups so clemmensen reduction can not be used. Acid sensitive substrate should be reacted in the Wolf-Kishner reduction which utilise strongly basic conditions. 23. (d) An excellent reagent for oxidation of 1° alcohols to aldehydes is PCC. $$R - CH_2 - OH \xrightarrow{PCC} R - CHO$$ 24. (c) $$CH_3COOH \xrightarrow{LiA1H_4} CH_3CH_2OH \xrightarrow{(A)}$$ $$\downarrow^{PCl_5}$$ $CH_3CH_2CI \xrightarrow{(B)}$ $$\downarrow^{Alc. KOH}$$ $CH_2 = CH_2 \xrightarrow{(C)}$ Hence the product (C) is ethylene. 25. **(b)**